High resolution stratigraphy of the Jurassic-Cretaceous boundary interval in the Gresten Klippenbelt (Austria)

ALEXANDER LUKENEDER1,*, EVA HALÁSOVÁ2, ANDREAS KROH3, SUSANNE MAYRHOFER1, PETR PRUNER3, DANIELA REHÁKOVÁ2, PETR SCHNABL3, MARIO SPROVIERI4 and MICHAEL WAGREICH3

1Geological and Paleontological Department, Natural History Museum, Burgring 7, 1010 Vienna, Austria; alexander.lukeneder@nhm-wien.ac.at
2Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15 Bratislava, Slovak Republic; halasova@fns.uniba.sk; rehakova@fns.uniba.sk
3Institute of Geology, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 269, 165 00 Praha 6, Lysolaje, Czech Republic
4Institute for Marine and Coastal Environment (IAMC-CNR), Calata Porta di Massa (Interno Porto di Napoli), 80133 Napoli, Italy
5Department for Geodynamics and Sedimentology, Center for Earth Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

(Manuscript received February 8, 2010; accepted in revised form June 10, 2010)

Abstract: The key objective of investigation of hemipelagic sediments from the Gresten Klippenbelt (Blassenstein Formation, Ultragelvetic paleogeographic realm) was to shed light on environmental changes around the Jurassic-Cretaceous (J/K) boundary on the northern margin of the Penninic Ocean. This boundary is well exposed in a newly discovered site at Nutzhof. Around the critical interval including the boundary, this new outcrop bears a rich microplanktonic assemblage characterized by typical J/K (Tithonian/Berriasian) boundary faunas. The Nutzhof section is located in the Gresten Klippenbelt (Lower Austria) tectonically wedged into the deep-water sediments of the Rhenodanubian Flysch Zone. In Late Jurassic–Early Cretaceous time the Penninic Ocean was a side tract of the proto-North Atlantic Oceanic System, intercalated between the European and the Austroalpine plates. Its opening started during the Early Jurassic, induced by sea floor spreading, followed by Jurassic–Early Cretaceous deepening of the depositional area of the Gresten Klippenbelt. These tectonically induced paleogeographic changes are mirrored in the lithology and microfauna that record a deepening of the depositional environment from Tithonian to Berriasian sediments of the Blassenstein Formation at Nutzhof. The main lithological change is observed in the Upper Tithonian Crassicollarina Zone, in Chron M20N, whereas the J/K boundary can be precisely fixed at the Crassicollaria–Calpionella boundary, within Chron M19n.2n. The lithological turnover of the deposition from more siliciclastic pelagic marl-limestone cycles into deep-water pelagic limestones is correlated with the deepening of the southern edge of the European continent at this time. Within the Gresten Klippenbelt Unit, this transition is reflected by the lithostratigraphic boundary between siliciclastic-bearing marl-limestone sedimentation in the uppermost Jurassic and lowermost Cretaceous limestone formation, both within the Blassenstein Formation. The cephalopod fauna (ammonites, belemnites, apteids) and crinoids from the Blassenstein Formation, correlated with calcareous microfossils and nanofossil data combined with a stable isotope and paleomagnetic data, indicate the Tithonian to middle Berriasian (Hybonoticeras hybonotum Zone up to the Subthurmannia occitanica Zone; M17r–M21r). The succession of the Nutzhof section thus represents deposition of a duration of approximately 7 Myr (ca. 150–143 Ma). The deposition of the limestone, marly limestone and marls in this interval occurred during tectonically unstable conditions reflected by common allodapic material. Along with the integrated biostratigraphic, geochemical and isotopic analysis, the susceptibility and gamma-ray measurements were powerful stratigraphic tools and important for the interpretation of the paleogeographic setting. Two reverse magneto-subzones, Kysuca and Brodno, were detected within magnetozones M20n and M19n, respectively.

Key words: Jurassic/Cretaceous boundary, Penninic Ocean, paleoecology, paleogeography, environmental changes.

Introduction

Jurassic and Lower Cretaceous pelagic sediments are known to form a major elements of the northernmost tectonic units of the Gresten Klippenbelt (Cžjžek 1852; Kühn 1962; Küpper 1962; Gottschling 1965; Decker & Rögl 1988; Decker 1990; Piller et al. 2004). Preliminary results on a Jurassic-Cretaceous boundary section of the Gresten Klippenbelt were presented including description of new faunas and localities (Küpper 1962). Biostratigraphic data on the Blassenstein Formation (Stollberger Schichten of Küpper 1962) near Nutzhof are remarkably scarce (Cžjžek 1852; Küpper 1962).

The tectonically highly active northern zone of the Penninic Ocean (the southern margin of the European continent) is crucial for understanding the formation of the Penninic
Ocean, its subsequent subduction and the following Alpine history.

Formation of the Penninic Ocean, here defined to include the Ligurian Basin (sensu Dercourt et al. 1993, 2000; Masse et al. 2000; Mandic & Lukeneder 2008) and synonymous with the Alpine Tethys (Stampfli & Borel 2002 and Stampfli et al. 2002) was initiated in the Late Triassic by rifting and disjunction of the Austroalpine microcontinent from the southern European Plate margin (Stampfli & Mosar 1999; Scotese 2001). It formed an eastern prolongation of the North Atlantic Rift-System, which affected the final breakup of the Permo-Triassic supercontinent Pangaea (e.g. Faupl 2003). The formation of the oceanic crust and the sea-floor spreading lasted from the Middle Jurassic to the Early Cretaceous, terminating with the introduction of its southward-directed subduction beneath the northern Austroalpine plate margin (Faupl & Wagreich 2000; Mandic & Lukeneder 2008). This tectonic phase is reflected by the lithological change within the Nutzhof section. An increasing deepening, reflected in the sedimentary succession (e.g. allogenic limestones and microturbidites), in the section at Nutzhof, marks the opening of the Penninic Ocean. The pelagic carbonate sedimentation, which started in the Late Jurassic, changes from siliciclastic-dominated limestone deposition to pure limestone-dominated. The Penninic Ocean persisted from the Late Jurassic until close to the end of the Cretaceous.

The paleomagnetic and rock-magnetic study is a continuation of detailed paleontological and magnetostratigraphic studies of the Jurassic/Cretaceous (J/K) boundary in the Tethyan Realm (Houša et al. 1999). The section at Brodno near Žilina, W Slovakia, was the first section investigated with high-resolution magnetostratigraphy and micropaleontology in the Carpathians (Houša et al. 1999). Magnetostratigraphic studies were carried out in the Bosso Valley of Umbria, Italy (Houša et al. 2004) and the Tatra Mountains, Poland (Grabowski & Pszczółkowski 2006). The magnetostratigraphic investigations published by Pruner et al. (2009) preliminarily determine the boundaries of magnetozones M17n to M22r (six reverse and six normal zones). The aim of these studies was to globally and objectively establish a correlation between biozones around the J/K boundary in the Tethyan Realm using global paleomagnetic events and precisely determine the boundaries of magnetozones M19 and M20 including narrow reverse subzones. These studies provided a precise record of polarity changes in the Earth’s magnetic field and determined their stratigraphic positions precisely within a biochronostatigraphic zonation.

The Nutzhof locality represents the only known section that includes the J/K boundary interval in the Gresten Klippenbelt. The section contains rich assemblages of radiolarians, calpionellids, saccococids, nannofossils and in some intervals ammonites. The J/K boundary sediments of the Nutzhof section provide an excellent succession for quantitative and integrated methods due to their fossiliferous and undisturbed bedding for a period of almost 7 million years.

Location and geological setting of Nutzhof

Locality description

The Nutzhof locality is situated in the Gresten Klippenbelt of Lower Austria (48°04' 49" N, 15°47' 36" E), about 20 km south of Böheimkirchen and 5 km north of Hainfeld (Fig. 1), 600 m above sea level (m a.s.l.) (ÖK 1:50,000, sheet 56 St. Pölten). The outcrop is located in an abandoned quarry in the south-eastern-most part of the northeast-southwest striking Gresten Klippenbelt, between Kasberg (785 m a.s.l.) to the east and the vicinity of the Nutzhof (550 m a.s.l.) to the west. The quarry is located on the northern side of the Kasberg ridge and the measured section is exposed on the eastern side of the quarry.

Geological setting

The Gresten Klippenbelt at Nutzhof is surrounded by deep-water successions of the Rhenodanubian Flysch Zone. The Gresten Klippenbelt represents an independent and scarcely known geological unit. It is tectonically incorporated in the Flysch Zone as a long, thin, east-west striking marly and calcareous unit (Fig. 1). Sediments from the Gresten Klippenbelt are considered to belong to the southern part of the Helvetic paleogeographic realm. The Gresten Klippenbelt sediments were deposited on the southern shelf and
slope of the European continent, on the slope of the Bohemian Massif at the north-western margin of the Penninic Ocean. The Nutzhof site consists of two different facies within the Blassenstein Formation (Lukeneder 2009). The lower part (Tithonian; 18.0–10.0 m) with dark marl-limestone alternations and its characteristically intercalated limestone beds, and the upper part (Tithonian–Berriasian; 10.0–0.0 m) with light grey, almost pure limestone. Limestone beds display uniform overturned bedding-plane orientation. The mean strike is 151° ±30° and the mean dip angle 44° ±22°. The succession is characterized by a marked lithological and faunal change at Nu 10.0 which does not coincide with the Jurassic/Cretaceous boundary at bed Nu 7.0 (Nu for Nutzhof samples). Sediments occur as wacke-, pack- or mudstones.

The Nutzhof section

The Jurassic-Cretaceous boundary in the Gresten Klippenbelt

The most recent reports concerning the J/K boundary interval from the Gresten Klippenbelt present preliminary results (Lukeneder 2009; Kroh & Lukeneder 2009; Pruner & al. 2009; Reháková et al. 2009) (Fig. 2). Therein first results have been presented on macro-, micro- and nannofossils. Tectonic units including the J/K boundary and the overlying limestone beds were reported by Cžjžek (1852), Kühn (1962), Klippenbelt (1959), Küpper (1962), Gottschling (1965), Decker & Rögl (1988), Decker (1990) and Piller et al. (2004).

Materials and methods

The Jurassic-Cretaceous boundary section at Nutzhof was studied with an integrated approach. Beds were sampled for biostratigraphical, paleomagnetic, geochemical (CaCO₃, TOC, S) and isotopic (δ¹⁸O, δ¹³C, δ⁸⁷Sr) data. Focus is directed to an interval of about 18.0 m (Nu 0.0–Nu 18.0) that was studied in detail (Figs. 2, 3, 4). Macro-, micro- and nannofossil samples were quantitatively investigated (Fig. 4). Samples were collected at intervals of 0.1 and 0.2 meters for stable isotopes, total organic carbon (TOC), sulphur (S), calcium carbonate (CaCO₃), susceptibility and gamma log. The microfossil content was analysed for calpionellids, radiolarians, saccocomids (thin sections) and insoluble residues. High resolution studies were combined with grey-scale quantification, gamma-ray and susceptibility analyses. Sample numbers, for example Nu 10.0, correspond to the sample interval at 10.0 m within the log (for all numbers and figures, Nu = Nutzhof). All samples are stored at the Natural History Museum of Vienna, in the collection of the Department of Geology and Paleontology.

Gamma-ray analysis

The gamma log measures the radioactivity of the rock, which represents a direct function of its clay-mineral content. Increasing radioactivity reflects the increasing clay content. Gamma response (counts per second — cps) was measured using a hand-held standard gamma-ray scintillometer.

Macrofossils

Macrofossil material includes 46 ammonite specimens, 238 lamellapycthy and 82 rhyncholites were examined. Four brachiopods and three inoceramids as well as a single belemnite specimen were collected. Ammonites are preserved as steinkerns or are represented by calcitic aptichi. Shell-preservation is restricted to organisms with primary skeletal calcite of belemnite-rostra and brachiopods in addition to rare inoceramid fragments (calcitic prisms). The ammonite assemblage contains six different genera: Subplanites, Haploceras, Phylloceras, Ptychophylloceras, Lytoceras and Leptotetragonites dominated by the perisphinctid genus Subplanites (Lukeneder 2009).

Calpionellids and calcareous nannofossils

Quantitative micro- and nannofacies analysis includes study of calpionellids and calcareous dinoflagellates in 93 thin sections. The thin sections are deposited in the Natural History Museum in Vienna; NHMW 2007e0271/0000. Changes in the distribution of calpionellids and calcareous nannofossils were studied in detail in order to correlate them with the changes in nannoplankton associations (Figs. 2, 3 and 4). Calcareous nannofossils were analysed semiquantitatively in 19 smear slides, prepared from all lithologies by standard techniques, using a light polarizing microscope at 1250× magnification. At least 200 specimens were counted in each slide to record relative abundances and the stratigraphic range of taxa (Figs. 2, 3). Nannofossil preservation can be characterized as moderately to intensely etched by dissolution. The calcareous nannofossil zones were adopted from the zonal scheme proposed by Bralower et al. (1989).

Magnetic components

Paleomagnetic analyses presented in these studies come from 244 samples, but the preliminary results include only 111 samples (see Pruner et al. 2009). All the samples were subjected to progressive thermal demagnetization (TD) or alternating field (AF) demagnetization in 11–12 temperatures or fields. The individual components were precisely established using multicomponent analysis of remanence (Kirschvink 1980). Isothermal remanent magnetization (IRM) to saturation was measured to identify magnetically active minerals. Magnetoamineralogical analyses and unblocking temperature determination show that magnetite and goethite are the main carriers of remanent magnetization.

Microfossils

Apart from thin sectioning also employed for a study of calpionellids, an effort was made to obtain three-dimensional specimens of the crinoids and other microfossils commonly observed in the thin sections (namely foraminifers, ostracods, rhyncholites, small aptichi, ophiuroid remains,
Fig. 2. Nutzhof log with occurrence and range of calcareous nannofossils, calcareous dinoflagellates and calpionellids and indicated paleomagnetic zonation: normal magnetozones are denoted black, reverse zones in white, and unknown parts in grey.
etc.). Bulk samples were collected in closely spaced intervals in the lower, marly part of the succession (10.0–18.0 m). Strong lithification hampered dense bulk sampling in the upper part of the section (0 to 10.0 m). These beds were analysed by thin sections only. Traditional washing methods were not applicable due to strong lithification of the sediment. Partial disaggregation was achieved by repetitive, combined treatment with hydrogen-superoxide and the tenside Rewoquat (see Lierl 1992). After cleaning, the microfossils were hand picked under a microscope. For the present study we used the sediment fractions larger than 250 µm only.

TC and TOC content

Calcium carbonate contents (CaCO₂; wt. % bulk rock, TC) were determined using the carbonate bomb technique. Total carbon content was determined using a LECO WR-12 analyser. Total organic carbon (TOC) contents were calculated as the difference between total carbon and carbonate carbon, assuming that all carbonate is pure calcite. All the chemical analyses were carried out in the laboratories of the Department of Forest Ecology at the University of Vienna.

Stable isotopes

A total of 37 bulk sample stable isotope analyses were measured by automated continuous flow carbonate preparation GasBenchII device (Spötl & Vennemann 2003) and ThermoElectron Delta Plus XP mass spectrometer at the IAMC-CNR (Naples) isotope geochemistry laboratory. Acidification of samples was performed at 50 °C. For each six samples, an internal standard (Carrara Marble with δ¹⁸O=−2.43 vs. V-PDB and δ¹³C=2.43 vs. V-PDB) was run, and for each 30 samples, the NBS19 international standard was measured. Standard deviations of carbon and oxygen isotope measures were estimated 0.1 and 0.08 ‰, respectively, on the basis of ~10 repeated samples. All the isotope data are reported in per mil (‰) relative to the V-PDB standard.

Eight Sr⁶⁸Sr isotope data were analysed from 19 bulk-rock samples of limestones at the Geochronological Laboratory of the Department of Lithospheric Research, Centre for Earth Sciences, University of Vienna using strontium separation (Subplanites fasciculatiformis, Ptychophylloceras ptychoicum, Leptotetragonites honratianus, Haploceras elimatum, Hibolites (gr.) semisulcatus and some lamellaptychi. The magnetostratigraphic log across the Nutzhof section includes the M21r to the M17r magnetozones subdivided into the Kysuca (M20r) and Brodno (M19r) subzones (Figs. 2, 6). The average sedimentation rate in the Nutzhof section is ca. 3.7 m/Myr (Fig. 7), but with high dispersion (from 2–11 m/Myr). The scatter of the sedimentation rate is similar to Hlboča profile in Slovakia (Grabowski et al. 2010). The main difference between these two sections is in the thickness of M19 and M20 mangentozones. Nutzhof has higher sedimentation rate at M19 while Hlboča appears with higher rates in M20.

Macrofossil content

The macrofossil content is characterized by ammonoids, aptchi, belemnites, brachiopods, bivalves and echinoderms. The ammonite fauna comprises six different genera represented by Lytoceras sutile Oppel, Lytoceras sp., Leptotetragonites honratianus (d’Orbigny), Phylloceras sp., Ptychophylloceras ptychoicum (Quenstedt), Haploceras (Haploceras) elimatum (Oppel), Subplanites fasciculatiformis Lukeneder. The ammonite fauna is dominated by the perisphinctid-type. Ammonitina is the most common component (60 %; Subplanites and Haploceras), followed by the Phylloceratina (25 %; Ptychophylloceras and Phylloceras), and the Lytoceratina (15 %; represented by Lytoceras and Leptotetragonites). The belemnite Hibolites (gr.) semisulcatus (Müller) and aptchi Lamellaptychus) occur. Only Mediterranean cephalopod elements are present at Nutzhof. Brachiopods are represented by Triangope, bivalves by inceramid shells and echinoderms by crinoids (Phyllocrinus belbekensis Arendt, Balanocrinus sp., Crassicoma sp. and Saccocoma tenella) (Goldfuss). The crinoid fauna recovered from the bulk samples of Nutzhof is typical for Upper Jurassic strata of Central and Eastern Europe. The low diversity of stalked crinoids, common in many contemporaneous deposits (Hess et al. 1999), may be interpreted as a result of the distal position of the sec-
Fig. 3. Compiled geochemical, isotope and fossil data on the J/K boundary at Nutzhof. Note the change at the predating interval at meter 7 below the J/K boundary.
tion, which represents a deep-water facies. The incomplete size ranges of isocrinid and phyllocrinid ossicles, the lack of fragile elements and the presence of allodapic material (Lukeneder 2009) suggest that the majority of the crinoid material is allochthonously deposited. Saccocomid fragments, in contrast, are not sorted and include abundant fragile elements suggesting that these crinoids are autochthonous.

Of the crinoid material only the saccocomids can be used for biostratigraphy. Saccocoma tenella is restricted to the Upper Kimmeridgian—Upper Tithonian. From a biogeographic point of view the faunal composition indicates connections with contemporaneous units of the northern Tethys shelf in Eastern Europe.

Microfacies and calcareous microplankton assemblages

The limestones in the section include wackestones, packstones and mudstones. Fine-grained micrite with pelagic microfossils (calpionellids, calcareous dinoflagellates, radiolarians) and calcareous nannofossils characterize an open-marine environments. Rare skeletal debris from fragmented and disintegrated shells of invertebrates (benthic foraminifers, echinoderms, molluscs) are derived from shallower environments. The studied microfacies are typical for basinal settings.

Calpionellids

Calpionellids in the studied samples are generally well-preserved. Hyaline forms dominate, whereas chitinoidellids are rare. The chitinoidellid taxonomy of Pop (1997) and Reháková (2002) is followed here. The group is represented by Borziella slovenica (Borza), Dobeniella tithonica (Borza) and Chitinoidella boneti Doben, species typical for the Boneti Subzone of the Chitinoidella Zone (Figs. 2, 4). The appearance of first hyaline calpionellid loricas of Praetintinnopsella andrusovi Borza and Tintinnopsella remanei Borza
precede the crassicollarian radiation. *Crassicollaria parvula* Remane and *Calpionella alpina* Lorenz dominat relative to *Crassicollaria massutiniana* (Colom), *Calpionella grandalpina* Nagy and *Tintinnopsella carpathica* (Murgeanu & Filipescu) in the Remane Subzone of the *Crassicollaria Zone*. Higher in the section, crassicollarians abruptly decrease in abundance, being replaced by an interval with radiation of small spherical forms of *Calpionella alpina* Lorenz. The diversification of a monospecific calpionellid association started in the overlying *Ferasini* and *Elliptica* Subzones of the standard *Calpionella Zone* where *Calpionella alpina* Lorenz is accompanied by *Tintinnopsella carpathica* (Murgeanu & Filipescu), *Remaniella* ferasini Pop., *R. duranddelgai* Pop., *R. catalanoi* Pop, *Calpionella elliptica* (Cadisch), *Tintinnopsella longa* (Colom), and *Lorenziella hungarica* Knauer.

Calcareous dinoflagellates

Calcareous dinoflagellates predominate in the Lower and Upper Tithonian being represented by *Cadosina parvula* Nagy, *Carposistomiosphaera borzai* (Nagy), *Schizosphaerella minutissima* (Colom), *Parastomiosphaera malonica* (Borza), *Cadosina semiradiata semiradiata* Wanner, *Cadosina semiradiata fusa* (Wanner), *Carposistomiosphaera tithonica* Nowak, *Calcosphaera foris* Rehánek, *Coloscaphera tenuis* (Nagy), *Coloschima carpathica* (Borza), and *Stomiosphaerina proxima* Rehánek. For the first time the appearance of *Coloscaphera foris* Rehánek precedes the appearance of *Calcosphaera tenuis* (Nagy), hampering the determination of the *Tenuis* and *Fortis* dinoflagellate Zones sensu Rehánek (1992) (Figs. 2, 4).

Calcareous nannofossils

The semiquantitative study (Figs. 2, 3) reveals that only the taxa *Conusphaera* spp., *Polycostella* spp., *Nannoconus* spp., *Cyclagelosphaera margerelii* Noël, *Watznauera barnesae* (Black) Perch-Nielsen, and *W. manivitae* Bukry occur in significant abundances. Nannofossils indicative of eutrophic conditions are present. In the upper part of the studied interval, the abundance of *Conusphaera* drops. This interval was correlated with the *Microstaurus chiastius* Zone (NJK) and the *Rotalipilus laffitei* NJK-C, determining the J/K boundary interval. It shows good correlation with the upper part of the *Crassicollaria Zone* and the *Calpionella Zone* (Alpina Subzone), which represents the J/K boundary interval.

The interval bearing the calpionellid species of the Lower Berriasian *Calpionella Zone* (Ferasini Subzone) (sample Nu 5.0) shows a distinctive change in the calcareous nannofossil assemblage—the onset of nannoconids (Nannoconus globulus minor Bralower, Nannoconus steinmannii minor Deres & Achéritéquy, Nannoconus kamptneri minor Bralower, Nannoconus cornuta Deres & Achéritéquy), this nannofossil event indicates the base of the *Nannoconus steinmannii* Zone (NJK-D) (Microstaurus chiastius Zone NJK) Bralower et al., which belongs to the lowermost Berriasian.

The calcareous nannofossils from the sample interval Nu 4.0–Nu 0.0 (correlating with the calpionellid *Calpionella Zone*, *Elliptica Subzone*) record the diversification of nannoconids. The FAD of *Nannoconus steinmannii* Kamptner is recorded at level Nu 2.0. It could reflect the appearance of the taxon abundance (sensu Bralower et al. 1989: p. 188). *Nannoconus globulus* minor, *Nannoconus kamptneri* minor, *Nannoconus winterieri*, *Nannoconus globulus* Deres & Achéritéquy, *Nannoconus steinmannii* minor Deres & Achéritéquy, *Nannoconus steinmannii* Nannoceras sp. 2, indicative of the *Nannoconus steinmannii* Zone (NJK-1, Bralower et al. (1989), which is middle Berriasian in age.

On the basis of calcareous nannofossil distribution, the interval between the FAD of *Nannoconus winterieri* and the FO of *Nannoconus* globulus minor. This interval, which correlates with the lowermost Berriasian. The calcareous nannofossil investigated in sample Nu 11 reflect a rather distinct change. The FO of *Helenaea chiastia* Worsley, *Hexolithus noeliae* Loeblach & Tappan and the nannofossil species *Nannoconus compressus* Bralower et al. are evidence for the base of the *Microstaurus chiastius* Zone NJK Bralower et al., 1989 and its *Hexolithus noeliae* Subzone NJK-A, which is thought to represent the Late Tithonian interval. The Subzone coincides with the upper part of the *Chitinoidella Zone*.

The calcareous nannofossil assemblages from samples Nu 9.0 to Nu 6.0 contain dissolution-resistant nannofossil genera *Conusphaera*, *Cyclagelosphaera*, *Watznauera*, *Diazomatholithus* and *Assipetra*. The FAD of *Nannoconus compressus* winterieri Bralower & Thierstein (1989) was observed (sample 9.0). Many remains of dissolution-susceptible coccoliths are present. In the upper part of the studied interval, the abundance of *Conusphaera* drops. This interval was correlated with the *Microstaurus chiastius* Zone NJK, Subzone *Rotalipilus laffitei* NJK-C, determining the J/K boundary interval. It shows good correlation with the upper part of the *Crassicollaria Zone* and the *Calpionella Zone* (Alpina Subzone), which represent the J/K boundary interval.

The interval bearing the calpionellid species of the Lower Berriasian *Calpionella Zone* (Ferasini Subzone) (sample Nu 5.0) shows a distinctive change in the calcareous nannofossil assemblage—the onset of nannoconids (Nannoconus globulus minor Bralower, Nannoconus steinmannii minor Deres & Achéritéquy, Nannoconus kamptneri minor Bralower, Nannoconus cornuta Deres & Achéritéquy), this nannofossil event indicates the base of the *Nannoconus steinmannii* minor Subzone NJK-D (Microstaurus chiastius Zone NJK) Bralower et al., which belongs to the lowermost Berriasian.

The calcareous nannofossils studied from the sample interval Nu 4.0–Nu 0.0 (correlating with the calpionellid *Calpionella Zone*, *Elliptica Subzone*) record the diversification of nannoconids. The FAD of *Nannoconus steinmannii* Kamptner is recorded at level Nu 2.0. It could reflect the appearance of the taxon abundance (sensu Bralower et al. 1989: p. 188). *Nannoconus globulus* minor, *Nannoconus kamptneri* minor, *Nannoconus winterieri*, *Nannoconus globulus* Deres & Achéritéquy, *Nannoconus steinmannii* minor Deres & Achéritéquy, *Nannoconus steinmannii* Nannoceras sp. 2, indicative of the *Nannoconus steinmannii* Zone (NJK-1, Bralower et al. (1989), which is middle Berriasian in age.

On the basis of calcareous nannofossil distribution, the interval between the FO of *Nannoconus winterieri* co-occurring with small nannoconids in bed Nu 9.0 and the FO of *Nanno-
conus steinmannii minor in bed Nu 5.0 (FAD after Hardenbol
et al. 1998 — 143.92 Ma) is interpreted as the Tithonian-
Berriasian boundary interval (Figs. 2, 3).

Stable isotope data

Oxygen and carbon (O, C)

The bulk carbon-isotope values (Fig. 3) lie between +0.49
and +2.10 ‰ corresponding to biogenic calcite precipitated
under open marine conditions during the Jurassic-Creta-
ceous (e.g. Weissert et al. 1985). All δ18O values are be-
tween ~1.94 to ~5.49 ‰ and appear depleted relative to
diagenetically unaltered marine calcite (e.g. van de Schoot-
brugge et al. 2000, and reference therein). This reflects ele-
vated temperature during burial diagenesis and/or effects of
meteoric diagenesis (Weissert 1989). The carbon isotope sig-
nal is considered of primary importance as a calibration tool
for the stratigraphy inferred by other methods, including the
Jurassic/Cretaceous boundary (Bed Nu 7.0) indicating changes in depositional environment 0.5
to 1 million years before the end of the Jurassic. The interval
from Nu 12.0–10.0 (CaCO3 89.03–68.97 ‰; S 0.59–0.45 ‰;
TOC up to 0.97 ‰) differs markedly and heralds the environ-
mental change observed (Fig. 3).

Both the CaCO3 and the S content clearly show a trend to-
wards higher values and stable conditions from bed Nu 10.00 to Nu 18.00. Unstable conditions are mirrored in
alternating values in the lower part of the log by variations
from 89.03 ‰ CaCO3 and 0.59 ‰ S (Nu 12.0) in limestone
beds to 40.72 ‰ and 0.30 ‰ (Nu 13.4) in marl beds.

The range is smaller and more constant in the interval
Nu 10.0–18.0 with CaCO3 values from 86.16 ‰ at Nu 9.6 up
to the maximum value of 97.4 ‰ at Nu 3.6. The total sulphur
content is positively correlated to the CaCO3 values. The
maximum value is at bed Nu 9.0 with 0.58 ‰ S and its mini-
mum with 0.5 ‰ S in bed Nu 0.0. As confirmed by Hirano
(1993) the sulphur content is a reliable index for oxic-anoxic
conditions of the bottom water and sediment at the time of
preservation.

The weight % TOC values show no positive correlation
with S or CaCO3. TOC values oscillate throughout the log.
They vary from 0.001 ‰ to 0.91 ‰ (Nu 11.2) in the lower
part and from 1.07 ‰ (Nu 3.4) to 0.001 ‰ in the upper part.

The above described geochemistry is also reflected in the
results of grey-scale data marking siliciclastic input. The sec-
tion can be subdivided into three parts: a lower part
(Nu 18.0–12.0) with 170–111 (mean 140.5), a middle part
(Nu 12.0–10.0) with 138–90 (mean 114) and an upper part
(Nu 10.0–0.0) with 254–195 (mean 224.5). In combination
with other analyses, the grey-scale factor is a good indicator
for siliciclastic input (clay, not sandstone) in pelagic to
hemipelagic sediments. This indicates the dominance of si-
iclastic components and allogenic microturbidites within
the dark mid-part. These results corroborate those obtained
from susceptibility and gamma log (increasing values show
higher contents in clay minerals), thin sectioning and micro-
facies analysis.

Susceptibility

Susceptibility measurements at Nutzhof represent a direct
function of the clastic or turbiditic content and associated
mineral spectra (Fig. 3). Higher susceptibility data reflect
higher detritic input of terrigenous material. The paleomag-
netic data given in the magnetostratigraphic profile indicate
a significant jump of remanent magnetization and magnetic
susceptibility, at Nu 10.0. This change marks the change from marls and marly limestone to pure limestone. Magneto-susceptibility measurements allow a subdivision of the Nutzhof section into three parts or intervals. A general decreasing trend throughout the log reflects a decreasing content of siliciclastic material indicating a decrease in clastic input to the depositional area at Nutzhof during the Late Jurassic–Early Cretaceous. Magneto-susceptibility measurements allow a subdivision of the Nutzhof section into three parts or intervals. A general decreasing trend throughout the log reflects a decreasing content of siliciclastic material indicating a decrease in clastic input to the depositional area at Nutzhof during the Late Jurassic–Early Cretaceous. Mean values of volume magnetic susceptibility (k) are shown in Table 1. The k ranges from -8.6 to 15.6×10^{-6} SI for upper interval between 0–10 m of the section and from 30 to 85.1×10^{-6} SI for the lower part (10.12–18.4 m). The lower part from Nu 18.0–12.0 shows values from 0.052–0.028 (mean 0.039). Above Nu 12.0 values range from 0.050–0.026 (mean 0.033). The most marked change appears at Nu 10.0 from values of 0.050 to 0.010. The upper interval from Nu 10.0 to 0.0 is characterized by very low values from 0.012–0.000 (mean 0.004). The J/K boundary strata itself are not characterized by significant changes in values.

Gamma log

The radioactivity variation of the studied section is measured by gamma-ray measures and represents a direct function of the variation of the clay-mineral content. Hence, higher radioactivity reflects higher clay contents. Measurements of gamma response (cps) are a powerful tool for interpreting the stratigraphy in the outcrop.

Generally measured cps values range between 4 and 30. The gamma response allows a clear subdivision of the section into three parts each corresponding to the three identified main lithological units within the Blassenstein Formation. The gamma response gradually decreases from Nu 18.0 to Nu 0.0, reaching the highest values at Nu 16.5 and lowest values at Nu 7.7 and Nu 3.3. Within this gradually decreasing trend, the biggest excursion is recorded close to bed Nu 10.0. Values range in the lower interval (Nu 18.0–12.0) from 15–30 cps (mean 22.53 cps), in the middle interval (Nu 12.0–10.0) from 13–23 cps (mean 19.95 cps), and in the upper interval (Nu 10.0–0.0) from 4–14 cps (mean 9.07 cps) (Fig. 3).

The gamma response becomes gradually weaker in the upper, undisturbed part of the section. The uppermost part of the section, however, shows an upwards decreasing gamma response. The curve pattern therefore shows a vertically congruent curve to the susceptibility values.

The decreasing gamma log values together with the characteristic pattern in decreasing susceptibility suggest a more stable depositional environment from about Nu 10.0 and upwards, predating the J/K boundary by 3 meters or 0.5 million years.

Paleomagnetism

The paleomagnetic study of the section identifies the boundaries of magnetozones from M17r to M21r and the reverse subzones Kysuca and Brodno (M20n.1r and M19n.1r, respectively). The record of polarity changes in the Earth’s magnetic field can determine the precise age. The identification of the detected polarity zones against the M-sequence of polarity intervals given by the GPTS (Gradstein et al. 2004) is the most important topic. The preliminary determination of boundaries of magnetozones M17n to M22r was the result from 30 samples of C-component direction (Pruner et al. 2009). The number of polarity zones, namely six normal and six reverse, is the same number as in preliminary results. The mean values of the modulus of NRM (Jn) and of volume magnetic susceptibility (k) for 244 samples of Upper Tithonian and Lower Berriasian limestones are shown in Table 1. The k ranges from -8.6 to 15.6×10^{-6} SI for the upper interval between 0–10 m of the section and from 30 to 85.1×10^{-6} SI for the lower part (10.12–18.4 m). The results of AF and TD demagnetization procedures are displayed in Pruner et al. (2009: figs. 3, 4). The A-component is of viscous origin and is demagnetizable in the temperature range of 20–100 °C (or AF 0–5 mT). The origin of the B-components, low temperature (LTC) or low field (LFC) were undoubtedly imprinted, most probably in the Neogene, after Alpine folding. Both magnetic polarities are present in C-component (high temperature — HTC or high field — HFC) directions, but the directions are highly scattered (Table 2, Fig. 5). The statistical...
Fig. 6. Magnetostratigraphic profile across the Nutzhof J/K boundary strata, paleomagnetic and lithostratigraphic data. M — NRM in the natural state; k — value of volume magnetic susceptibility in the natural state; D — declination; I — inclination. Normal (reverse) magnetozones are denoted black (white), unknown (grey).
marl (Nu 18.0—10.0) to limestone (Nu 10.0—0.0). At level Nu 10 due to the significant change in lithology from change of remanent magnetization and magnetic susceptibility, magnetostratigraphic profile (Fig. 6) indicate a significant tectonic rotation. The paleomagnetic data given in the anomalous, having been affected by counter clockwise paleo-

parameters for component C (total number 220) are influenced by samples close to the boundary of shorter polarity zones. The mean values of C-component directions are anomalous, having been affected by counter clockwise paleo-
tectonic rotation. The paleomagnetic data given in the magnetostratigraphic profile (Fig. 6) indicate a significant change of remanent magnetization and magnetic susceptibility, at level Nu 10 due to the significant change in lithology from marl (Nu 18.0—10.0) to limestone (Nu 10.0—0.0).

Figure 5 presents the results of the magnetostratigraphic profile with indicated moduli values of natural remanent magnetization (Jn), volume magnetic susceptibility values of samples in the natural state (k), paleomagnetic declination Dp and inclination Ip (of C-components of remanence inferred by multi-component analysis). The values of the angular deflection of the direction of C-components of remanence from the mean direction, with only normal polarity being taken into consideration (reverse directions were transformed into normal directions for the calculation of the mean direction), are given in the next column. The resulting normal and reverse magnetozones are indicated in the last column.

Discussion

The high-resolution quantitative analysis of selected organic groups (calpionellids, radiolarians, saccocomaids) indicates major variations in their abundance and composition (Figs. 2, 3, 4). The Upper Jurassic (Tithonian) depositional setting at Nutzhof was influenced by the periodic input of biodetritus from surrounding shallow marine paleoenvironments, whereas deposition was more constant during the Berriasian and deposition was more constant during the Berriasian and lower Cretaceous (Lower Berriasian) formations in several areas studied (Michalík et al. 1990, Grabowski et al. 2010).

The calcareous dinoflagellates presented in the Lower and Upper Tithonian. Their stratigraphic and paleoecological potential has been discussed by Rehákova (2000a,b). In the Nutzhof section, the Lower Tithonian record of calcareous dinoflagellates shows a distinct change in abundance and composition. Forms with radial orientation of calcite crystallites in their cyst walls dominate in the Tithonica and Malmica Zones, whereas cadosinid species with oblique arrangement of the calcite crystallites dominate the Semiradiata Zone. According to Michaelik et al. (2009), coinciding acme peaks of Cadosina semiradiata semiradiata Wanner and Conusphaera spp. probably indicate warmer surface waters.

Chitinoidellids are very rare in the Nutzhof section. The appearance of the first hyaline calpionellid loricas precedes the crassicollarian radiation. A monospecific calpionellid association consisting predominantly of Calpionella alpina Lorenz characterizes the section. A similar calpionellid evolution and biostratigraphy of the Jurassic-Cretaceous boundary interval was recorded by Remane (1986), Pop (1994), Reháková (1995), Olóriz et al. (1995), Grün & Blau (1997), and Andreini et al. (2007). Reháková (in Michalík et al. 2009) demonstrated that the J/K boundary interval can be characterized by several calpionellid events: the onset, diversification, and extinction of chitinoidellids (middle Tithonian); the onset, diversification, and extinction of crassicollarians (Upper Tithonian); and the onset of the monospecific Calpionella alpina association at the J/K boundary. Due to synsedimentary erosion probably originating during several extensional pulses, which denivelated the sea bottom, clast-bearing calpionellid biomicroites were documented along the Upper Jurassic and Lower Cretaceous (Lower Berriasian) formations in several areas studied (Michalik et al. 1990, 1995; Grabowski et al. 2010).

The calcareous nannofossil ranges in the Nutzhof section provides a tool for biostratigraphic subdivision of the J/K boundary interval. The coccoliths of the family Watznaukeraceae and three nannolithic genera Conusphaera, Polycostella, and Nannoconus dominate the assemblages. This is in accordance with nannofossil studies in other locations at low latitudes sections across the J/K boundary (Thierstein 1971, 1973, 1975; Erba 1989; Gardin & Manivit 1993; Özkan 1993;

The lowermost occurrences of nannofossils are partly obscured due to poor preservation, but we tentatively identified the boundaries of zones and subzones based on certain stratigraphic markers (Polycostella beckmannii, Helenea chiastia, Hexalithus noeliae, Nannoconus wintereri, Nannoconus globulus minor, Nannocoenus steinmannii minor, Nannoconus kamptneri minor, Nannocoen us steinmannii, Nannoconus kamptneri kamptneri, Nannoconus globulus globulus).

Tremolada et al. (2006) detected that Conusphaera dominates the nannolith assemblage in the upper middle Tithonian (“Conusphaera world”). This is corroborated by data obtained in this study. The acme peak of the genus Polycostella in samples Nu 13.0 and 14.0 coincides with the middle Tithonian Semiradiata Subzone (Rehákova 2000b). Comparison with the Brodno section (Michalík et al. 2007 and Michalík et al. 2009) indicate that the dominance of the nannolith Polycostella beckmannii occurs somewhat lower in the Chitinoidella Zone in the Nutzhof section. The first appearance of Helena chiastia is also demonstrated to be diachronous, being close to the base of the calpionellid Crassicollaria Zone in the Brodno section, but recorded in the uppermost part of the Chitinoidella Zone in the Nutzhof section.

The most distinct nannofossil event is the onset of nannocoenids which was observed in the interval comprising the calpionellid Calpionella Zone, Ferasini Subzone (lowermost Berriasian). This indicates a change in the paleoceanographic regime. From the biostratigraphic point of view, the upper J/K boundary datum based on nannofossils (Bornemann et al. 2003).

The change of saccoconid marl and limestone by overlying calpionellid limestone in the Upper Tithonian also characterizes J/K-boundary successions reported from numerous other localities in Austria (e.g. Kristan-Tollmann 1962; Flügel 1967; Holzer 1968; Holzer & Poltnik 1980; Rehákova et al. 1996), Germany (Lackschewitz et al. 1989), Poland (Pszczółkowski & Myczyński 2004) and Slovakia (Vašíček et al. 1992). Many of these localities, however, differ lithologically from the section studied at Nutzhof. In most cases the saccoconid-bearing beds are pure, reddish limestone.

Saccoconid limestones have often been interpreted as Kimmeridgian (e.g. Flügel 1967: p. 35; Sauer et al. 1992: p. 183; Wessely 2008: p. 210, fig. 5) and have been used as the marker bed for that stage (Bernouli 1972). Reliable stratigraphic data is, however, commonly lacking. Based on well-dated sections, the majority of the recorded saccoconid occurrences are of Tithonian age (Nicosia & Parisi 1979; Keupp & Matyszkiewicz 1997). This is corroborated/support ed by the data from the present study.

Summary and conclusions

The studied section at Nutzhof represent a J/K-boundary succession deposited in a distal slope-setting in the Gresten Klippenbelt, a part of the Helvetic paleogeographic realm. The Upper Jurassic to Lower Cretaceous pelagic sediments represent a major sedimentation cycle.

The significant depositional change from a mixed siliciclastic/carbonate to a pure carbonate depositional system is marked by a change from a lower marly cyclic part to an upper calcareous part. Accordingly, the lower (Tithonian) marly part is characterized by dark, laminated pelagic marls and marly limestones with intercalated turbiditic limestone beds (e.g. allogenic limestones). The upper part (limestone) represents a phase of autochthonous pelagic sedimentation characterized by bright, chert- and aptiychi-bearing nannocoenid limestone. The macro-invertebrate fauna of the Berriasian limestone succession is sparse, comprising rare ammonoids, aptiychi, belemnites and brachiopods. The macro-invertebrate fauna of the Tithonian marl-limestone succession is rich in saccoconids accompanied by rare bivalves (inoceramids) and partly by abundant ammonites. The microfauna, in contrast, is abundant, with dominating calpionellids and radiolarians in the limestone succession and saccoconid blooms within the marl-limestone succession.

The macrofauna, as already stated, is represented especially by ammonoids, belemnoids, aptiychi and bivalves. The whole section yielded 46 ammonite individuals/specimens. Sampling of the sparse ammonites was difficult due to hard limestones. The ammonite biostratigraphy is integrated with micro- and nannofossil biostratigraphic data from the marl-limestone succession and indicates Early Tithonian to middle Berriasian ages (Hybonoticeras hybonotum Zone up to the Subthurmannia occitana Zone). Descendants of Subplanulites have not previously been reported within the Gresten Klippenbelt. All ammonoids are typical of the Mediterranean Province.

The limitation of ammonite biostratigraphy obtained by the new ammonite findings from Nutzhof has demonstrated the importance of integrating macrofauna biostratigraphy with the micro- and nannofossil biostratigraphy. The described fauna increases our understanding of ammonite faunas from the area of the Gresten Klippenbelt and the neighbouring Waschberg Zone during deposition of the Jurassic-Cretaceous boundary interval. Both areas were at the time located on the passive northern margin of the Penninic Ocean.

Magnetostratigraphic, geochemical and isotopes studies contribute to the understanding of the environmental history during the Jurassic-Cretaceous boundary interval in a little known area. Sediment deposition took place during conditions of relatively stable water masses with relatively low sedimentation rates in an unstable sedimentological environment. This is reflected by a change in lithology from Nu 11.0 to Nu 13.0 (11 to 13 m). A series of event layers with redeposited faunal elements (e.g. phyllocrinids) indicate a transport of sediment from shallower areas in the North. The depositional area was influenced by the opening of the Penninic Ocean during the Late Jurassic to Early Cretaceous. A phase of an earlier Penninic opening, is reflected as a significant change in lithology and composition of faunal assemblage in the uppermost Tithonian (at Nu 10.0 m).

There is no evidence for redeposition of ammonites, which are considered autochthonous and parautochthonous pelagic elements from the open sea. Four crinoid taxa are recorded in
the Tithonian Blassenstein Formation and comprise *Balano-criinus* sp., *Saccocoma tenella* (Goldfuss), *Crassicoma?* sp., and *Phyllocrinus belbekensis* Arendt. Only *S. tenella* is abundant. The other taxa, in particular the benthic isocrinids and phyllocrinids are rare. Preservation and ossicle size range of the latter groups indicate their allochthonous origin. The saccocomid remains are restricted to the Tithonian, the saccocomid-rich facies being overlain by calpionellid limestones.

The biostratigraphic study based on the distribution of calpionellids allowed an identification of the *Bonei* Subzone of the *Chitinoellida Zone*. The J/K boundary is recorded between the *Crassicollaria* and *Calpionella Zone* and is defined by the morphological change of *Calpionella alpina* tests. The base of the *Crassicollaria Zone* approximately coincides with the onset of *Tintinnopsella remanei* Borza and the base of the standard *Calpionella Zone*, with the monospecific calpionellid association being dominated by *Calpionella alpina* Lorenz. Two further Subzones (*Ferasini* and *Elliptica*) of the standard *Calpionella Zone* were recognized in radiolarian-calpionellid and calpionellid-radiolarian wackestones in the overlying uppermost part of the section.

The appearance of several important nannofossil genera allow the identification of the Lower, middle and Upper Tithonian, and a relatively accurate identification of the Tithonian-Berriasian boundary, and the definition of the Lower Berriasian nannofossil zones. Coccoliths of the family *Watzaueriaceae* and nanoliths of the genera *Conusphaera*, *Nannoconus* and *Polycostella* dominate the assemblages. The interval between the FAD of *Nannoconus wintereri* co-occurring with small nannoconids in sample Nu 9 (the uppermost Tithonian) and the FAD of *Nannoconus kamptneri minor* in sample Nu 5 (lowermost Berriasian) is interpreted as the Tithonian-Berriasian boundary interval. The nannoconid dominance in the lowermost Berriasian, known as the “*Nannoconus world*” sensu Tremolada et al. (2006) is now recorded in the Nutzhof section.

Paleomagnetic data across the J/K boundary strata allow the construction of a detailed magnetostratigraphic zonation. The interval between Nu 5 to 10.5 m provides a high-resolution profile with an almost continuous record of magnetic and paleomagnetic parameters, that records the critical intervals with boundaries of the magnetozones M19n–M20n. According to magnetozone M19n and Brodno Subzone, the J/K boundary is identified within the interval between Nu 6.5–7 m. Significant changes do not occur at the J/K boundary itself. The step of remanent magnetization and magnetic susceptibility, at level Nu 10.0, occurs in magnetozone M20n below the Kysuca Subzone. A similar jump of NRM and susceptibility lies in the M20n just above the Kysuca Subzone in the Bosso section. The average sedimentation rate in the Nutzhof section is ca. 3.7 m/Myr (Fig. 7), but with high dispersion (from 2–11 m/Myr) differing from the average sedimentation rates of 2.27 m/Myr recorded in Brodno and 2.88 m/Myr in Puerto Escaño. Relatively low rates (1 m/Myr) are recorded in the Bosso Valley, but higher rates (3–11 m/Myr) are reported by Grabowski & Pszczółkowski (2006) from the Tatra Mountains. No significant change can be noted at or within the J/K boundary interval. The integration of fossil and magnetostratigraphic data demonstrates a duration of approximately 7 million years (approximately 150–143 Ma) for the deposition of the Nutzhof section (Figs. 6 and 7).

The carbon isotope record documents a significant change in the C-cycle dynamic suggesting a sluggish 3-D dynamic of the marine system possibly associated with a decrease in primary productivity. Abrupt oscillations mainly recorded between the levels 10 and 6 m suggest a significantly unstable global carbon system during the Jurassic but a change towards balanced conditions in the Cretaceous interval.

Acknowledgments: We are indebted to Hans Egger (Geological Survey of Austria) who made us aware of the studied locality. The study was supported by the Austrian Science Fund (FWF; Project P20018-N10) and by the Grant Agency of the Czech Republic (Grant No. GACR 205-07-1365) and Research Plan of the IG AS CR No. CEZ AV0Z30130516. This is also a contribution to the 506 IGCP UNESCO Project, APVV-0280-07, APVV-0248-07, APVV-0465-06, APVT 51-011305 and LPP 0120-09. MW thanks IGCP 555 and the Austrian Academy of Sciences for financial support. Thanks go to members of the Kilian Group (Lower Cretaceous Ammonite Working Group; president Stephane Reboulet, Lyon) for fruitful discussions on the ammonoid fauna. Technical support for photography was provided by Alice Schumacher (Vienna). Franz Topka (Vienna) assisted with the preparation of ammonoid specimens and Anton Englert (Vienna) prepared the thin sections. Paleomagnetic analyses were performed by Daniela Venhodová, Jana Drabotová, and Jiří Petráček. The software for the evaluation of paleomagnetic measurements was prepared by Otakar Man (Institute of Geology ASCR v.v.i.). We thank Luc Bulot (Marseille) and Jacek Grabowski (Warsaw) for their comments which helped to improve the quality of the manuscript.

References

Andreini G., Caracuel J.E. & Parisi G. 2007: Calpionellid biostatigraphy of the Upper Tithonian–Upper Valanginian inter-

Vereins Steiermark* 98, 47–57.

M.F. & van de Schootbrugge B. 2007: Early Cretaceous ice-cap volume, palaeo-temperatures (Mg, 13O), and isotope stratigraphy (13C, 87Sr/86Sr) from Tethyan belemnites. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 248, 391–430.

Appendix

Crossplot of the δ^{18}O vs. δ^{13}C values at Nutzhof (both vs. V-PDB).