Methods in 3D Modelling of Triassic Ammonites from Turkey (Taurus, FWF P22109-B17)

Susanne LUKENEDER¹, Alexander LUKENEDER¹

¹ Geological and Palaeontological Department, Natural History Museum, Burgring 7, A-1010 Vienna, Austria, susanne.lukeneder@nhm-wien.ac.at; alexander.lukeneder@nhm-wien.ac.at

Peer-reviewed IAMG 2011 publication

Abstract

A case study in 3D modelling on an ammonite mass occurrence, deposited during the Upper Triassic (approx. 225 myr) of Turkey, is presented. Well established 3D visualisation and geometrical modelling techniques are used in a unique palaeontological task of reconstructing the distribution and alignment of ammonites within ammonite abundance beds. The software package GOCAD is used for the 3D reconstruction of ammonites, calcite cement and calcite veins from digitized polished sections and for the visualisation of a 3D surface laser scan data. Expected results of 3D modelling can act as proxy for the environmental activities and biotic crisis during the Carnian time.
1 Introduction

Evidently, the creation of 3D models of palaeontological structures such as fossils (e.g. ammonites, algae etc.), facilitates their interpretation and further permits the generation of mechanical models. 3D models of fossil specimens have become increasingly popular, providing accurate reconstructions of volumes, distribution, orientation and size of fossils in a sample, as well as biostratimomic and diagenetic processes. A multitude of complementary techniques has advanced in recent years, which provide such 3D datasets of palaontological objects, both from surface and volume scanning methods (e.g. microtomography). Laser scanning (airborne, terrestrial or desktop scanners) of surface morphology, point cloud data generated from digital images, or computed tomography down to a few microns (or even below) of spatial resolution are increasingly employed for geoscientific investigations, using an equally variable range of processing techniques and software packages. Numerous papers from all fields in earth sciences (e.g. Marschallinger 2001, Ketcham et al. 2005, Loehr et al. 2006, Wyckiewicz et al. 2008, Garwood et al. 2010, Maloof et al. 2010, Kruja et al. 2011, Rath et al. in press) demonstrate the great versatility of 3D geometrical models in a wide range of analytical techniques and applications.

2 Material

The abundant, at least 200 million specimens of Upper Triassic ammonites, of the genus Orthocelites are assumed to be a new species. Further topics of investigation are the original position and environmental conditions of the sedimentation area at the Asagiiyaylabel section, located in the Taurids. The formation of the ammonite bed is either autochthonous or allochthonous (transported). Expected 3D modelling results will be essential to reach geodynamic, palaeooceanographic and palaeobiological conclusions. This further leads to the question of the original water depth during the formation of this ammonite mass occurrence. As a collaborative project, one aim is to work within different sciences, with the Structural Processes Group at the Departments of Geodynamic and Sedimentology (University of Vienna) and the Geometric Modelling and Industrial Geometry group (3D technology at the Vienna University of Technology). Interdisciplinary collaboration with other scientists is essential in modern times. Statistical analysis of the orientation and relative position (e.g. imbrication) of the ammonite shells can hint to current or transport directions. Different orientation of calcite veins should tell us something about depositional conditions of the mass occurrence. 3D modelling of calcite-cement distribution (representing geopetal structures) and post-diagenetic calcite veins displacing several ammonites will complete the geometrical reconstruction and shed light on the biostratimomic and additional diagenetic processes. The combination of analysing different fossil groups, with additional analysis of isotopic, magnetostratigraphic, cyclostratigraphic and geochemical features, will help to extract details of the Upper Triassic history around one of the most severe crisis in the Mesozoic time, the Carnian Crisis. Investigations, undertaken at sections (e.g. Asagiiyaylabel) covering this time interval, can work as proxy for the major Upper Triassic Tethyan crisis. Environmental changes as displayed by the sea level and climate can become clearer and the ‘motor’ behind the demise better understood.
Figure 1: Rock sample of the Triassic ammonite bed with abundant specimens of the genus Orthocelites from Asagiyaylabel, Taurus Mountains in Turkey.

3 Main scope

The creation of a 3D model from the ammonite Orthocelites itself and moreover the reconstruction of a 3D model of the ammonite-occurrence at Asagiyaylabel with the according palaeontological structures and fossils (e.g. ammonites, bivalves, corals, algae etc.), is the main aim of the study herein. Within a 3 years project of the Austrians Science Fund (FWF P22109-B17) volumes, distribution, orientation and size of the ammonites will be used to deduce to the biostratimonic and diagenetic processes at the time of formation. A multitude of complementary techniques will provide surface laser scans of hand specimens from the mass occurrence as well as from single ammonite specimens. Modern techniques will be employed, such as laser scanning of surface morphology, point cloud generating from digital images, or computed tomography down to a few microns using an equally variable range of processing techniques. We want to demonstrate the importance of 3D models in palaeontology, by showing the great versatility and wide range of applications, analytical techniques and possible limitations of 3D models in earth sciences.

4 Methods

Most of the laboratory and analytical work will be performed at the Geological-Palaeontological Department of the Natural History Museum Vienna, Burgring 7, A-1010 Vienna. For analysing the thin sections, equipment for standard and large-size thin sectioning will be provided, along with dissecting microscopes and microscopes. For documentation of the collected materials, various photographic equipment is available (cameras, uclidean ronments, photomicroscope, light scanning device, SEM). For data processing, modern computer equipment with appropriate software is also present. Thin sections and acetate peels will be used to analyze sedimentary structures and textures, components, cements and fossil structures. Digital images will be taken to document outcrops and logs. 3D scans and digital calculations (GOCAD) will be made in cooperation with the Department of Geodynamic and Sedimentology (Structural Processes Group; University of Vienna) and the Geometric Modelling and Industrial Geometry group (3D technology, Vienna University of Technology). Mathematical problems will be solved and mathematical modelling with simulations can be performed at the MathConsult GmbH in Linz.

The test of a 3D model based on computer-tomography (CT; see KETCHAM & CARLESEN 2001) has to be repudiated due to same composition and similar specific mass density of the embedding matrix (about 2.8 g/cm³) and the ammonite shell (secondary calcite, about 2.6-2.8 g/cm³) and the infilled matrix (about 2.8 g/cm³). Garwood et al. 2010 described 2 more possibilities for using CT scans at material of similar density: Scanning them at low x-ray energy would reveal the different phases (Garwood et al. 2010). By using phase contrast holotomography at a synchrotron
(an inaccessible tool for palaeontologist in the future) different crystal structures could be visible (Garwood et al. 2010).

4.1 3D Modelling by Combination of 2D Slices

4.1.1 Procedure

A 15 x 8 x 8 cm block, taken from the ammonite mass occurrence, was set into concrete for stabilisation. We recurrently milled 2 mm and scanned each slide with a commercial scanning system. 78 slides of the ammonite block with a distance of 2 mm between each slice could be produced. The polyline-tool of the drawing program Corel Draw was used to digitize the individual 2D objects (mostly ammonites). The next step will be to create a 3D volume object from the 2D sections by combining matching line features to a surface object using the software package GOCAD. Statistical analysis of the orientation and relative position (e.g. imbrication) of the fossils, but also calcite cement distribution (representing geopetal structures) and post-diagenetic calcite veins displacing several ammonites will complete the geometrical reconstruction. 3D volume modelling from classified grid data (scan/ foto-) via IDL (Marschallinger 1998 a, b, c; Marschallinger 2001) would be an additional detailed possibility. By using a software-package for outline accordance, for example CorresGrow (Herbert & Jones 2001), complex structures could be detected and computed to a 3D model. A very low contrast of greyscales (not filled living chamber vs. sediment) will cause problems. SPIERSalign (Serial Palaeontological Image Editing and Rendering System), a software programme for reconstructing and analysing tomographic data sets, written by Russell Garwood, would be another possibility to align slice images. Otherwise Corel Draw will be used for manual alignment.

4.1.2 GOCAD

GOCAD (Geological Objects Computer Aided Design) is a software for modelling and interpretation of geological structures and objects. The geometry of a research object is characterised by a set of nodal points in three-dimensional, modelling space (euclidean geometry). Physical characteristics can then be modelled by combining the nodal points (discrete smooth interpolation), and after that be shown as 3D models. 3D structural modelling and visualisation of natural datasets and the integration of these datasets, from small scale digitized hand specimen, terrestrial laser scanning, or reflection seismic data into comprehensive 3D-models is an essential part of the current research activity. The proposed research integrates well established 3D visualisation and geometrical modelling techniques in an exciting palaeontological task of reconstructing the distribution and alignment of ammonoids in a Triassic mass-occurrence from Turkey. The 3D reconstruction of ammonoids, calcite cement and calcite veins from digitized polished sections will be performed by using the commercial software package GOCAD. 3D surface laser scan data will be visualized in GOCAD, and by further processing size, orientation and distribution can be extracted.

4.2 3D Modelling Using 3D Laser Scans

By using laser surface scans, individual statistical information (e.g. imbrication or length of fossils) can be measured very fast and accurately. Statistical analysis can be made much quicker. Furthermore surface scans of single ammonites of the species Orthoceltites sp. (which is to 99 % the only ammonite species within the mass occurrence) can be used for reconstructing the individual ammonites of the 3D model (from the block of the ammonite mass occurrence) as close as possible to nature.
4.2.1 3D David Laser Scanner
The David Laser scanning tool is an efficient and cheap 3D scanning system. It works with the principle of triangulation from light-slices. Three-dimensional surfaces can be scanned very precisely. A calibration area behind the objects, together with the automatic or hand-held laser-scanner and a synchronised camera, yields very detailed three dimensional pictures.

4.2.2 Faro Laser Scanner
The new FARO® Laser Scanner Photon 120/20 with a new software-version FARO Scene 4.6, possesses the fastest Phase Shift Laser Scanner (976,000 points / second), with the biggest range, currently available on the free market. New technical features of the Photon 120/20 make the scanner a useful system for performing high-speed 3D scans with reduced random-noise obtained by efficient hyper-modulation. Surfaces of ammonites can therefore be reconstructed digitally without loss of information and digital-slices can be created.

![Figure 2: 3D calculation from 3 polished slices of the ammonite bed. Distance between single slices is 2 mm. Reconstructed ammonites in grey and calcite veins in green.](image)

5 Conclusions and Aims
The proposed research integrates well established 3D visualisation and geometrical modelling techniques in an exciting palaeontological task of reconstructing the distribution and alignment of ammonites in a Triassic mass-occurrence from Turkey. The 3D reconstruction of ammonites, calcite cement and calcite veins from digitized polished sections will be performed, using the commercial software package GOCAD. Statistical analysis of the orientation and relative position (e.g. imbrication) of the fossils, the calcite cement distribution (representing geopetal structures) and post-diagenetic calcite veins displacing several ammonites, will complete the geometrical reconstruction. Moreover, 3D surface laser scan data will be visualized in GOCAD. Abundant ammonites will be counted in detail and sedimentation processes such as post-mortem transport (e.g. Turbiditic ammonite layers) versus bottom current orientation will be explored. Expected 3D modelling results will be essential to reach geodynamic, palaeoceanographic and palaeobiological conclusions.
Acknowledgements

The authors thank Ulrike Exner from the Department for Geodynamics and Sedimentology (University Vienna) for useful instructions to the software program GOCAD. We thank Alexander Rath (University Vienna) for his advice with a software program to create movies of the 3D reconstructions and 3D Laser Scans. We are much obliged to Russell Garwood for constructive and helpful comments.
References


