A Revision of the Tonnoidea (Caenogastropoda, Gastropoda) from the Miocene Paratethys and their Palaeobiogeographic Implications

BERNARD LANDAU*), MATHIAS HARZHAUSER**) & ALAN G. BEU***)

2 Text-Figures, 10 Plates

Contents

Zusammenfassung .. 61
Abstract .. 62
1. Introduction ... 62
2. Geography and Stratigraphy .. 62
3. Material ... 63
4. Systematics ... 63
 4.1. Family Tonnidae SUTER, 1913 (1825) 63
 4.2. Family Cassidae LATREILLE, 1825 64
 4.3. Family Ranellidae J.E. GRAY, 1854 70
 4.4. Family Bursidae THIELE, 1925 75
 4.5. Family Personidae J.E. GRAY, 1854 79
5. Distribution of Species in Paratethyan Localities 80
 5.1. Diversity versus Stratigraphy 80
 5.2. The North–South Gradient 81
 5.3. Comparison with the Pliocene Tonnoidean Fauna 81
6. Conclusions ... 82
Acknowledgements .. 82
Plates 1–10 .. 84
References ... 104

Revision der Tonnoidea (Caenogastropoda, Gastropoda) aus dem Miozän der Paratethys und paläobiogeographische Folgerungen

Zusammenfassung

*) BERNARD M. LANDAU, International Health Centres, Av. Infante D. Henrique 7, P 8200 Albufeira, Portugal.
bernie.Landau@sapo.pt

**) MATHIAS HARZHAUSER, Museum of Natural History Vienna, Geological-Palaeontological Department, Burgring 7, A 1014 Vienna, Austria.
mathias.Harzhauser@nmh-wien.ac.at

***) ALAN G. BEU, GNS Science, PO Box 30368, Lower Hutt, New Zealand 5040.
a.beu@gns.cri.nz
Abstract

The 24 species of Tonnoidea present in the Miocene Paratethyan assemblages are described and discussed. Species of tonnoideans have wide geographical and time ranges, unpaired in any other gastropod group. Consequently, most Paratethyan species are widespread in the Mediterranean and Atlantic bioprovinces. Several species display their first appearance in the Middle Miocene of the Paratethys Sea. Moreover, the distribution of tonnoidean gastropods within the Paratethys documents a strong climate forcing due to the Mid-Miocene Climate Optimum, indicated by diversity peaks, and the subsequent Miocene cooling indicated by a step-wise decline of diversities. Phases of geodynamically induced isolation, such as the Ottan-}

Gastropoda (Gastropoda) {c. 20 Ma, derive from Loibersdorf in Lower Austria (SCHAFFER, 1995), but no specialized revision of the gastropods along with corals, echinoderms and many other Badenian localities, mentioned in the distribution chapters in the systematic part, a precise dating within the Badenian is not known. The tonnoidean record in the Paratethys Sea ends abruptly at c. 12.8 Ma, at the Badenian–Sarmatian boundary. At that time, a major local extinction wiped out 97% of the gastropods along with corals, echinoderms and many foraminifera (see HARZHAUSER & PILLER, 2007). This Badenian–Sarmatian extinction event (BSEE) was most probably triggered by severe changes in water chemistry, bottom hypoxia and eutrophication at the water surface. Although normal marine conditions became re-established soon after, the molluscan fauna remained fully endemic and re-immigration of Mediterranean species was insignificant (HARZHAUSER & PILLER, 2007). This Badenian–Sarmatian extinction event (BSEE) was most probably triggered by severe changes in water chemistry, bottom hypoxia and eutrophication at the water surface. Although normal marine conditions became re-established soon after, the molluscan fauna remained fully endemic and re-immigration of Mediterranean species was insignificant (HARZHAUSER & PILLER, 2007). This Badenian–Sarmatian extinction event (BSEE) was most probably triggered by severe changes in water chemistry, bottom hypoxia and eutrophication at the water surface. Although normal marine conditions became re-established soon after, the molluscan fauna remained fully endemic and re-immigration of Mediterranean species was insignificant (HARZHAUSER & PILLER, 2007). This Badenian–Sarmatian extinction event (BSEE) was most probably triggered by severe changes in water chemistry, bottom hypoxia and eutrophication at the water surface. Although normal marine conditions became re-established soon after, the molluscan fauna remained fully endemic and re-immigration of Mediterranean species was insignificant (HARZHAUSER & PILLER, 2007). This Badenian–Sarmatian extinction event (BSEE) was most probably triggered by severe changes in water chemistry, bottom hypoxia and eutrophication at the water surface. Although normal marine conditions became re-established soon after, the molluscan fauna remained fully endemic and re-immigration of Mediterranean species was insignificant (HARZHAUSER & PILLER, 2007). This Badenian–Sarmatian extinction event (BSEE) was most probably triggered by severe changes in water chemistry, bottom hypoxia and eutrophication at the water surface. Although normal marine conditions became re-established soon after, the molluscan fauna remained fully endemic and re-immigration of Mediterranean species was insignificant (HARZHAUSER & PILLER, 2007). This Badenian–Sarmatian extinction event (BSEE) was most probably triggered by severe changes in water chemistry, bottom hypoxia and eutrophication at the water surface. Although normal marine conditions became re-established soon after, the molluscan fauna remained fully endemic and re-immigration of Mediterranean species was insignificant (HARZHAUSER & PILLER, 2007). This Badenian–Sarmatian extinction event (BSEE) was most probably triggered by severe changes in water chemistry, bottom hypoxia and eutrophication at the water surface. Although normal marine conditions became re-established soon after, the molluscan fauna remained fully endemic and re-immigration of Mediterranean species was insigni-
3. Material

The described Paratethyan shells are stored in the collections of the Natural History Museum Vienna and the Geological Survey of Austria. Additional material for comparison was utilised from the Bernard LANDAU private collection and from the collections of the Netherlands National Museum van Natuurlijke Historie, in Leiden.

Abbreviations of Institutions

NHW: Naturhistorisches Museum Wien, Vienna
GBA: Geological Survey of Austria
NHMW: Naturhistorisches Museum Wien, Vienna
aal Museum van Natuurlijke Historie, in Leiden.

4. Systematics

RIEDEL (1994) considered the Ficidae to constitute a separate superfamily, Ficoidea, on the basis of protoconch, teleoconch and soft part morphology. Until then, the Ficidae had been included in the Tonnoidae (THEILE, 1929; FRETTER & GRAHAM, 1981; VAUGHT, 1989). Ficidae have, therefore, been excluded from this monograph.

4.1. Family Tonnidae SUTER 1813 (1825)

Class: Gastropoda CUVIER 1797
Subclass: Prosobranchia
Superorder: Caenogastropoda COX, 1960
Order: Neotaenioglossa HALLER, 1882
Superfamily: Tonnoidae SUTER, 1913 (1825)
Family: Tonnidae SUTER, 1913 (1825)
Genus: Eudolium DALL, 1889

Eudolium subintermedium (D’OIRBIGNY, 1852)

(Pl. 1, Figs. 1–6)

1833 Cassis intermedia GRATELoup, p. 200 (non BROCCI, 1814).
1840 Cassis intermedia GRATELoup, Pl. 46, Fig. 7 (non BROCCI, 1814).
1852 Cassis subintermedia D’OIRBIGNY, no. 1671.
1867 Caecaria echinophora Lam. – PEREIRA DA COSTA, p. 133, Pl. 17, Fig. 2.
1880 Galeodea stephaniophora FONTANNES, p. 101, Pl. 7, Fig. 2.
1884 Cassidaria (Galeodea) cingulifera HOERNEs & AuINGER, p. 161, Pl. 17, Figs. 19, 20.
1890b Eudolium stephaniophorum (FONT.) – SACCO, p. 10, Pl. 1, Fig. 10.
1890b Eudolium stephaniophorum var. miotransiens SACCO, p. 10, Pl. 1, Fig. 11.
1890b Eudolium stephaniophorum var. gigantula SACCO, p. 11, Pl. 1, Fig. 12.
1890b Eudolium stephaniophorum var. recurvicauda SACCO, p. 11, Pl. 1, Fig. 13.
1890b Eudolium stephaniophorum var. plotransiens SACCO, p. 11, Pl. 1, Fig. 14.
1890b Eudolium stephaniophorum var. elongata SACCO, p. 12, Pl. 1, Fig. 15.
1890b Eudolium stephaniophorum var. trincingulata SACCO, p. 12, Pl. 1, Fig. 16.
1890b Eudolium stephaniophorum var. quattuorcingulata SACCO, p. 12.
1890b Eudolium stephaniophorum var. alternituberculata SACCO, p. 12, Pl. 1, Fig. 17.
1890b Eudolium stephaniophorum var. plurituberculata SACCO, p. 12.

1890b Eudolium stephaniophorum var. acutituberculata SACCO, p. 13, Pl. 1, Fig. 18.
1890b Eudolium (Tuberculodolium) stephaniophorum var. quattuorcingulata SACCO, p. 100, Pl. 22, Fig. 4.
1890b Semicassis subintermedia D’ORIBIGNY – COSSMANN & PEYROT, p. 422, no. 717, Pl. 11, Figs. 40–41.
1890b Cassidaria cingulifera HOERNEs et AuINGER – CSERPREGHY-MEZNERSICS, p. 33, Pl. 4, Fig. 7.
1890b Cassidaria (Cassidaria) cingulifera HOERNEs & AuINGER 1882 [sic] – KROMMIDGEVIA & STRACHIMIROV, p. 135, Pl. 37, Fig. 5.
1890b Cassidaria cingulifera HOERNEs & AuINGER, 1876 [sic] – STRAUSS, p. 241, Fig. 116.
1890b Dolum (Eudolium) subasfraculatum SACCO, 1891 [sic] – STRAUSS, p. 253, Pl. 64, Fig. 6.
1890b Eudolium stephaniophorum (FONTANNES, 1879 [sic]) – MArTINELL, p. 146, Pl. 5, Figs. 7–8.
1892 Eudolium stephaniophorum (FONTANNES, 1880) – CAVALLO & REPETTO, p. 70, Fig. 131.
1895 Cassidaria cingulifera HOERNEs & AuINGER, 1884 – BALUK, p. 201, Pl. 16, Figs. 9–10.
2003 Cassidaria cingulifera HOERNEs and AuINGER, 1884 – CERANKA & ZLOTNIK, p. 494, Text-Figs. 2 C–D.

Material: Maximum height 46 mm (incomplete). Grund (5, 1 complete), Ysliau (1).

Description: Shell medium-sized, fragile, globose, with relatively depressed spire. Protoconch missing. Three teleoconch whorls preserved, convex, periphery at abapical suture on spire whorls. Suture line, impressed. First whorl evenly convex, sculptured with four narrow, elevated spiral cords, with a fifth appearing at abapical suture and secondary cords appearing in interspaces at about one quarter to half whorl. Second whorl weakly shouldered, bearing two spiral cords, upper delimiting sutural ramp forming shoulder, lower between shoulder and abapical suture, gaining in strength abapically and slightly nodulose. Axial sculpture of strongly prosocline, close-set riblets, overriding spiral elements. Last whorl 90 % of total height, globose, strongly constricted at base; sculpture of about seven narrow primary cords, with 1 secondary cord and 1–2 spiral threads in each interspace. Between one and six primary cords develop many small spinose tubercles. Axial sculpture of close-set, prosocline growth lines. Aperture ovate, very wide, approximately 80 % of total height, outer lip weakly thickened by narrow labral varix. Outer lip denticulate on inner edge, with 24 small denticles, arranged in pairs. Anal canal not developed. Columella excavated mediially, straight below, with some irregular denticles and ridges present in abapical portion. Siphonal fasciole damaged in all specimens, bearing narrow spiral cords.

Variability: Only two of the five specimens available in the NHMW collections have an intact aperture, making it difficult to appreciate the variability in the thickness of the labral varix, but it seems to vary from very thin to thin. The number of spiral cords on the last whorl that produce tubercles is highly variable. This character does not seem to vary with ontogeny, as specimens of the same size have a variable number of tuberculous cords.

Discussion: The Recent species of Eudolium were revised by MARSHALL (1992). He distinguished Eudolium from Tonna by the markedly narrower spiral cords of Eudolium than of Tonna, and by the presence of obvious, fine, close, well raised axial ridgeset on Eudolium species that have not been reported from species referred to Tonna. All other characters appear to be shared by the two genera: the shape, size and sculpture of the protoconch, radial characters, the presence of an operculum in the
larval stage but not in the adult, thickening or not of the outer lip, and the unique mode of feeding by ingesting whole holothurians. More recently VOS & TERRYN (2007) revised MARSHALL’S (1992) Recent species of Eudolium and recognized only two living species, both with a world-wide distribution. BEU (in press) pointed out that the fine axial sculpture reported by MARSHALL (1992) in Eudolium is also present on early spire whorls of Tonna galea (LINNAEUS, 1758), the type species of Tonna, further blurring the distinction between these genera.

The shells from Grund have closely spaced, narrow, tuberculose spiral cords and fine axial ribs, distinctive of the genus Eudolium. Small tubercles develop at the shoulder of the penultimate whorl and on a variable number of rows on the last whorl. One damaged specimen has six spiral rows of tubercles (Pl. 1, Fig. 4), whereas in the only complete specimen (Pl. 1, Fig. 1) the tubercles are hardly developed at all.

This species has usually been referred to Eudolium ste- phaniophorum (FONTANNE, 1890), which was described from the Pliocene of France. However, the subadult shell illustrated by COSSMANN & PEYROT (1924, Pl. 1, Figs. 40–41) as Semicassis subintermedia (D’ORBIGNY, 1852) from the Middle Miocene, Serravallian of Saubrigues, France has the very broad aperture, shallow anal canal and narrow labral varix characteristic of E. stephaniophorum, and represents the same species. E. stephaniophorum (FONTANNE, 1890) was therefore considered a junior subjective synonym of Eudolium subintermedium (D’ORBIGNY, 1852).

Cassidaria (Galeodea) cingulifera HOERNES & AUINGER, 1984 is also a junior subjective synonym of Eudolium subintermedium, the earliest known member of its genus group. From the Lower Miocene, Burdigalian of the Turin Hills. The numerous illustrations given by SACCO (1890b, Pl. 1, Figs. 4–8) and the sheer number of varieties described reveal a similar degree of variability to that of E. subintermedium, especially in the strength and number of beaded cords. However, judging from SACCO’s Figs. (E. stephaniophorum), the aperture of E. subfasciatum seems to be consistently different from that of E. subintermedium, as it is narrower, with a more strongly developed denticulate labral varix and a much deeper, more strongly developed anal canal. Interestingly, E. subfasciatum occurs in the Caribbean Burdigalian deposits of the Chipola Formation of Florida (VOKES, 1986) and the Cantaure Formation of Venezuela (GISSON-SMITH & GIBSON-SMITH, 1988; BEU, in press).

We (BL coll.) have eight complete specimens from the Cantaure Formation of Venezuela and confirm the differences discussed above. The two species differ most clearly in the characters of their apertures. In our shells from Venezuela the shape of the outer lip is different, sinuous in profile in the mid-portion; weakly rounded in E. subintermedium. The anal canal is very deep and narrow, with its outer border delimited by two labral denticles that are more prominent than their neighbours. These denticles are not clearly seen in SACCO’s figures, but they are all subadult shells (max length 31 mm [SACCO, 1890b, p. 6]). Our largest shell from Venezuela is 60 mm in length. The outer lip is very strongly sinuous, the labral varix broad and flattened ventrally and very strongly denticulate, the denticles extending across the whole width of the varix. The collumellar callus is more strongly developed than in any specimen of E. stephaniophorum and raised into a free shelf over the faciole and finally, the siphonal canal is longer and more closed than in E. ste-

Distribution:

• Middle Miocene Atlantic (Langhian): France: Saub-

rigues, Aquitaine Basin (COSSMANN & PEYROT, 1924).

• Late Miocene Mediterranean (Tortonian): Italy: Tetti Borelli (SACCO, 1890b).

• Early Pliocene Atlantic: Guadalquivir Basin, Spain (GONZALEZ DELGADO, 1988); northeastern Spain (MAR-

TINELL, 1979).

• Pliocene (indeterminate) Mediterranean: Italy (SACCO, 1890b, 1904; CAVALLO & REPETTO, 1992).

Genus: **Malea VALENCIENNES, 1832**

Malea orbiculata (BROCHI, 1814) (Pl. 1, Figs. 7–10)

1814 *Buccinum orbiculatum* BROCHI, p. 647, Pl. 15, Fig. 22.

1852 *Dolium denticulatum* DESH. – HÖRNES, p. 164, Pl. 15, Fig. 1.

1884 *Dolium (Cadium) denticulatum* DESH. – HOERNES & AUINGER, p. 149, Pl. 16, Figs. 1–4.

1954 *Dolium (Cadium) orbiculatum* – CSEPREGHY-MEZNERICS, p. 35, Pl. 4, Fig. 5.

1966 *Dolium orbiculatum* BROCHI, 1814 – STRAUSZ, p. 253, Fig. 120, Pl. 64, Fig. 7.

1995 *Malea denticulata* (DESHAYES, 1836) – BALUK, p. 200, Pl. 16, Fig. 11.

2004 *Malea orbiculata* (BROCHI, 1814) – LANDAU et al., p. 39, Pl. 1, Fig. 2 (cum syn.).

2008 *Malea orbiculata* (BROCHI, 1814) – CHIRLI, p. 74, Pl. 28, Figs. 7–12.

Material: Largest 67.7 mm. Grund (18), Gunterdorf (1).

Description: See LANDAU et al. (2004, p. 40).

Discussion: The Paratethyan shells do not differ from specimens found in numerous Atlantic and Mediterranean Pliocene localities and discussed by LANDAU et al. (2004, p. 40).

Distribution: (Paratethys; for complete distribution see LANDAU et al. [2004, p. 40]):

• Early Miocene Paratethys (Karpatian): Hungary: Vár-

palota (KÖKAY, 1967).

• Middle Miocene Paratethys (Badenian): Poland: Koryt-

nica (BALUK, 1995); Austria: Grund, Weitendorf (HÖRNES, 1852; HOERNES & AUINGER, 1884; HARZHAUSER, 2004).

• Middle Miocene Mediterranean (Langhian or Serraval-

lian): Turkey: Karaman Basin (VAN DE VOORT coll., BL personal observation).

4.2. Family Cassidae LATREILLE 1825

Subfamily: **Cassinae LATREILLE, 1825**

Genus: **Cassis SCOPOLI, 1777**

Cassis postmamillaris SACCO, 1890 (Pl. 2, Figs. 1–4)

1884 *Cassis (Cassidea) mammillaris* GRAT. – HOERNES & AUINGER, p. 158, Pl. 17, Fig. 15.

1890a *Cassis postmamillaris* SACCO, p. 16, Pl. 1, Fig. 11.

1958 *Cassis (Cassis) postmamillaris* SACCO – ERÜNAL-ERENTÖZ, p. 48, Pl. 7, Fig. 3.

1960 *Cassis (Cassis) postmamillaris* SACCO – KOJUMDGIEVA & STRACHIMIROV, p. 133, Pl. 36, Fig. 6.

1998 *Cassis postmamillaris* SACCO, 1890 – FERRERO MORTARA et al., p. 12, Pl. 1, Fig. 4.

1998 *Cassis (Cassis) postmamillaris* SACCO – SCHULTZ, p. 62, Pl. 24, Fig. 1.

Material: 15+ adult specimens. Largest 110 mm height, 74.3 mm width. Gainfarn (9), Pötzeleinsdorf (3), Vöslau.
(5), Lápugui de Sus (10), Costeiu de Sus (1), Kienberg at Mikulov (2), Bulhary (= Pulgrom) (1).

Description: Shell large, solid, helmet-shaped with short spire. Protoconch poorly preserved in one juvenile; small, of about three smooth whorls. First teleoconch whorl sculptured with fine, close-set spiral cords. Weakly prosocline axial ribs appear on second whorl. Third whorl shouldered, with axial ribs obsolete on sutural ramp, wider and stronger towards abapical suture. Spiral sculpture obsolete on fourth and fifth whorls. Axial ribs obsolete, but forming tubercles immediately above and below sutures. Suture impressed, weakly undulating. Last whorl 90–93% of total height, with three rows each of six to eight rounded tubercles, adapical row at shoulder largest, weakly pointed, dorsal tubercle largest. Tubercles weakening abapically, third row becoming subobsectate towards outer lip. Several elevated axial rugae develop on the last part of the last whorl, most prominent towards outer lip. Aperture c. 75% of total height, elongate, wider ad- and abapically, narrowed in the central portion through enlargement of denticles on outer lip. Anal canal rounded, weakly developed. Outer lip strongly thickened, wider centrally than above or below, flattened ventrally, bearing eight–nine prominent denticles on inner edge. Middle three or four denticles larger than others, bifid. Columella broadly excavated in adapical half, bearing numerous irregular horizontal folds and denticles on inner edge, central denticles weakly bifid. Columella and parietal calluses broad, flattened, greatly thickened, forming triangular apertural shield, flared and wing-like adapically. Siphonal canal deep, narrow, strongly recurved posteriorly and adapically.

Variability: Most specimens are relatively constant in shape, characterised by the very triangular shape and the strongly flared parietal portion of the shield. The largest specimen from Lápugui de Sus (Pl. 2, Fig. 2) is somewhat unusual in having a more elevated spire, the whole of the outer lip is strongly thickened rather than just the mid-portion and the shield is more regular, less expanded in the parietal region. The strength of the tubercles is somewhat variable.

Discussion: It is difficult to be certain of the number of *Cassis* species present in the European fossil assemblages, as specimens are rarely adult and almost always rare. At least three distinct species of *Cassis* occur in the Mediterranean and Paratethyan Miocene. *Cassis bellardi* MICHELOTTI, 1847 has a large oval shell, with three rows of evenly sized nodules, the shoulder row more strongly developed on the dorsum, the parietal shield is also well-developed, but more ovate than that seen in *C. postmamillaris*. SACCO (1890a, p. 16) distinguished the Miocene *C. postmamillaris* from the Oligocene form by having fewer tubercles at the shoulder and fewer denticles inside the outer lip. This does not seem correct, however, as the numbers of tubercles at the shoulder of the last whorl are similar in the two species, and the number of denticles inside the outer lip 8–9, within the range seen in the Paratethyan populations of *C. postmamillaris*. Nevertheless, the characters of the prominent axial rugae and the rounded parietal shield are not present in the Miocene shells and clearly distinguish the two species.

A further species occurs in the Lower Oligocene, Rupelian (= Stampian) of France: *Cassis elegans* GRATELOUP 1827. We have examined several specimens from the locality of Gaas in France (largest, height 61.2 mm; B. GRATELOUP coll.). This species quite a different sculpture on the last whorl, consisting of four rows of tubercles, weakening abapically, with non-tuberculate secondary and tertiary spiral cords in the interspaces. The number of tubercles at the shoulder of the last whorl must be interpreted with care as, at least in *C. elegans*, this number decreases significantly with ontogeny. One juvenile specimen (height 36.5 mm) has 22 axial ribs on the last whorl, whereas a slightly more adult specimen (height 43.1 mm) has 16 ribs on the last whorl.

The European Oligocene to Miocene species of *Cassis* require revision, however, the Paratethyan *C. postmamillaris* seems distinct from all the French taxa. *Cassis* seems to have been present and fairly widely distributed in the Oligocene Proto-Mediterranean and Paratethys, represented in both the Oligocene and Miocene by at least three species each. However, *C. bellardi* did not return to the Mediterranean following the Messinian salinity crisis, despite the tropical conditions that prevailed during the Early Pliocene. There is no fossil record of *Cassis* for the Atlantic Miocene south of France, but it is possible that *C. bellardi* gave rise to the extant West African species *C. teselata*.

Description of *C. bellardi* as seen in the European Miocene fossils. *C. bellardi* seems most closely allied to the thick-shelled West African *Cassis tessellata* (Gmelin, 1791), whereas *C. postmamillaris* seems more closely related to the thick-shelled Caribbean *C. tuberosa* group.
Distribution:
• Middle Miocene Paratethys (Badenian): Austria: Forchtenau, Grund, Gainfarn, Enzesfeld, Vöslau, Nussdorf, Pötzleinsdorf (HÖRNES, 1852; SCHULTZ, 1998); Slovak Republic: Devinska Nová Ves (= Neudorf an der March) (HÖRNES, 1852); Czech Republic: Kleinberg at Mikulov, Bulhary (= Pulgrum) (HÖRNES, 1852); Romania: Lăpușii de Sus (= Lapugy), Costeiu de Sus (= Costel); Bulgaria (KOJUMGIEVA & STRACHMIEIROV, 1960).
• Late Miocene Mediterranean (Tortonian): Italy: Stazzano (SACCO, 1890a); Turkey: Adana Basin, Bicilgan (EUROAL-ERENTZÍ, 1958).

Genus: *Cypraeacassis* Stutchbury, 1837

Cypraeacassis cypraeiformis (BORS. 1820) (PI. 3, Figs. 3–5)

1820 *Cassis cypraeiformis* BORS. p. 229, PI. 1, Fig. 20.
1852 *Cassis crumena* – HÖRNES, p. 180, PI. 16, Figs. 1–3.
1884 *Cassis* (c. *Cassidea*) *cypraeiformis* BORS. – HOERNES & AUINGER, p. 159, PI. 17, Figs. 8–10.
1912 *Cassis cypraeiformis* BORS. – FRIEDBERG, p. 115, PI. 6, Fig. 4.
1959 *Cassis cypraeiformis* BORS. – EREMIJA, PI. 2, Fig. 11.
1966 *Cassis crumena cypraeiformis* BORS., 1820 – STRAUSZ, p. 248, PI. 64, Figs. 10–11.
1985 *Cypraeacassis* (*Cypraeacassis*) *cypraeiformis* (BORS. 1820) – ATANACKOVIĆ, 136, PI. 30, Figs. 17–18.
2003 *Cassis cypraeiformis* (BORS. 1820) – CERANOK & ZLOTNIK, p. 194, Text-Fig. 2 E.
2004 *Cassis cypraeiformis* (BORS. 1820) – LANDAU et al., p. 40, PI. 1, Figs. 3–6, PI. 2, Fig. 1 (cum syn.).
2008 *Cypraeacassis pseudocrumena* *D’ORBIGNY*, 1851 [sic] – CHIRLI, p. 79, PI. 29, Figs. 13–16, PI. 30, Figs. 1–8.

Material: Largest height 62.9 mm. Grund (2), Immendorf (1), Vöslau (20+), Lăpușii de Sus (= Lapugy), (6), Mikulov (5).

Description: See LANDAU et al. (2004, p. 41).

Discussion: As discussed by LANDAU et al. (2004), we recognise a single Miocene–Pliocene species *Cypraeacassis cypraeiformis* (BORS. 1820). Typical specimens of *C. cypraeiformis* from the Middle Miocene, Atlantic, Tethys and Paratethys have a relatively broad shell, strong axial sculpture with well-developed tubercles at the shoulder and a greatly thickened labial varix and basal callus, which extends onto the lateral wall to form a thick marginal callus. Shells in the Late Miocene and Pliocene populations from the Mediterranean and adjacent Atlantic are typically more elongate than those of chronologically older assemblages and have weak nodules at the shoulder and a thinner labial varix and basal callus, which is clearly delimited but does not extend beyond the base. However, shells with ancestral morphological characters can be found in Pliocene assemblages and vice versa. It seems, therefore, that there is no constant teleoconch character that separates the various nominal Neoconch characters can be found in Pliocene assemblages and vice versa. It seems, therefore, that there is no constant teleoconch character that separates the various nominal Neoconch characters can be found in Pliocene assemblages and vice versa. It seems, therefore, that there is no constant teleoconch character that separates the various nominal Neoconch characters can be found in Pliocene assemblages and vice versa. It seems, therefore, that there is no constant teleoconch character that separates the various nominal Neoconch characters can be found in Pliocene assemblages and vice versa. It seems, therefore, that there is no constant teleoconch character that separates the various nominal Neoconch characters can be found in Pliocene assemblages and vice versa. It seems, therefore, that there is no constant teleoconch character that separates the various nominal Neoconch.
For comparison with Galeoea rugosa (LINNAEUS, 1771) and Galeoea bicatenata (J. SOWERBY [1816], see LANDAU et al. [2004, p. 45]).

Distribution (Paratethys; for complete distribution see LANDAU et al. [2004, p. 45]):
- Middle Miocene Paratethys (Badenian): Austria: Grund, Baden, Sooß, Traiskirchen, Möllersdorf, Vöslau, Grinzin, Pfaffstätten, Mattersburg, Walbersdorf, Forchtenau (HÖRNES, 1852; HOERNES & AUINGER, 1884; GILBERT, 1963); Romania: Lăpușiu de Sus (= Lapugy), Coșteiu de Sus (= Kostej) (HOERNES & AUINGER, 1884; BOETTGER, 1902); Bulgaria (KOJUMĐIEVA & STRACHIMOIROV, 1960).

Subfamily: Phalinae BEU, 1981
Genus: Echinophoria SACCO, 1890

Echinophoria haueri (HOERNES & AUINGER, 1884) (PI. 3, Figs. 6–8; PI. 9, Fig. 8)

- 1852 CASSIDEA variabilis BELL. et MICH. – HÖRNES, p. 176, PI. 15, Fig. 9.
- 1884 CASSIDEA (b. Cassidea) Haueri HOERNES & AUINGER, p. 158, PI. 17, Fig. 13.
- 1890a Echinophoria Hoernesi SACCO, p. 50, PI. 1, Fig. 51.
- 1896 Cassidea (Cassidea) haueri M. HÖ. – BOETTGER, p. 58.
- 1993 Cassidia haueri M. (HOERNES, 1856) – NIKOLOV, p. 70, PI. 4, Figs. 1–2.
- 1998 Phalium (Echinophoria) haueri (HOERNES & AUINGER) – SCHULTZ, p. 62, PI. 24, Fig. 3.

Holotype: NHMW 1865/I/180.
Locus typicus: Lăpușiu de Sus, Romania.
Stratum typicum: Lower Badenian clay and silt.
Material: Largest height 44.9 mm. Sooß (6), Lăpușiu de Sus (= Lapugy) (2).

Description: Shell of medium size and thickness, globose-fusiform, with short, conical spire. Protoconch of 3.75 smooth whorls with small nucleus. Junction with teleoconch clearly delimited. Teleoconch of 4–4.5 convex, weakly shouldered whorls, with periphery at apical suture on spire whorls. Suture impressed, linear. Spire whorls with two cords more prominent than others, adapical cord just below suture, adapical cord delimiting sutureal ramp; further cords of irregular strength covering entire surface. Axial sculpture of numerous, weak, strongly prosocline riblets, spiral cords overriding axial elements. Last whorl greatly expanded, 90 % of total height, globose, base rounded, constricted abapically by narrow peribasal band. Spiral sculpture of numerous narrow spiral cords, alternating in strength on most specimens, each cord slightly wider than their interspaces. As on spire, two cords more prominent than others, upper delimiting sutureal ramp, lower at shoulder angle, becoming somewhat nodulose at intersections with axial riblets. Two axial ridges are present abapically, one at shoulder, other towards base, which are not continuous but offset from each other. Aperture elongate-ovate, approximately 75 % total height. Outer lip weakly thickened by narrow labral varix, broadly convex, weakly prosocline in profile. Outer lip irregularly denticulate within, denticles only developed on abapical portion of some specimens. Anal canal weakly developed. Siphonal canal short, deep, of variable width, strongly abapically recurved. Parietal calyx adherent, thin to well delimited, expanded, bearing irregular folds on some specimens. Columellar callus thickened, detached. Columella weakly excavated, abapical portion bearing strong folds or tubercles.

Variability: The description is based on a previously unfigured specimen in the NHMW collections from Sooß. Considering the scant material available, *Echinophoria haueri* (HOERNES & AUINGER, 1884) is remarkably variable in the axial sculpture of the last whorl, the thickness of the labral varix, the dentition on both the inner and outer lips and the thickness of the columellar callus. The axial sculpture is particularly variable, not only between adult shells, but also with age. Subadult shells tend not to have tubercles developed at the shoulder and to have a somewhat higher spire in relation to total height than in adults.

Discussion: The Paratethyan populations were originally considered to be conspecific with the Italian Middle Miocene *E. variabilis* (BELLARDI & MICHELOTTI, 1840) (HÖRNES, 1952, p. 176, PI. 15, Fig. 9). The difficulties with the taxonomy of the Mediterranean to Pliocene members of the genus *Echinophoria* were discussed by LANDAU et al. (2004, p. 46), who recognized only two species in the Mediterranean Neogene; the Middle Miocene *E. variabilis* and Late Miocene and Pleistocene *E. intermedia*. *Echinophoria variabilis* has five rows of smaller tubercles, whereas *E. intermedia* has three to four rows of more prominent tubercles. Both these Mediterranean species differ from the Middle Miocene Paratethyan *Echinophoria haueri* in having distinct rows of tubercles on the last whorl, whereas in *E. haueri* these are indistinct, interrupted vertical ridges rather than well defined horizontal rows of tubercles. The tubercles can become vertically elongated in *E. intermedia*, but are still arranged in rows, and are never as irregular as in *E. haueri*. Apart from the differences in the sculpture, *E. intermedia* is a much larger species than *E. haueri*, with a more globose last whorl.

SACCO (1890a, p. 50, PI. 1, Fig. 51) described a small cassid from the Burdigalian of the Turin Hills as *Echinophora hoernesi*, which is remarkably similar to *E. haueri*. SACCO himself noted the similarity, and said his new taxon differed from the Paratethyan species in being smaller, more oval, with more rounded whorls and a different pattern of vertical tubercular folds, although this last character could be variable. Unfortunately this taxon has not been refigured, it does not seem to be in the BELLARDI and SACCO collections in Turin, as it is not listed in FERRERO MORTARA et al. (1984). The size range given by SACCO (height 26–38 mm) is somewhat smaller than that of *E. haueri* in the NHMW collections. The smaller subadult shells of *E. haueri* do tend to have a higher spire in relation to the total height than the fully adult shells, with the spire whorls more rounded. We see no difference between the axial sculpture in the specimen figured by SACCO and that seen in subadult specimens of *E. haueri* in which the tubercles at the shoulder are not yet developed. We therefore consider *Echinophora hoernesi* SACCO, 1890 to be a junior subjective synonym of *E. haueri*.

Distribution:
- Early Miocene proto-Mediterranean: Italy: Baldissero, Turin Hills (SACCO, 1890a).
- Middle Miocene Paratethys: Austria: Baden, Sooß, Walbersdorf (HÖRNES, 1852; SCHULTZ, 1998); Romania: Lăpușiu de Sus (= Lapugy), Coșteiu de Sus (= Kostej) (HOERNES & AUINGER, 1884; BOETTGER, 1902); Bulgaria: Jasen, Opanec Formation (NIKOLOV, 1993).

Genus: Semicassis MöRCH, 1853

Semicassis laevigata (DEFRANCE, 1817) (PI. 4, Figs. 1–2)

1837 Cassis Saburone ADAMS, var. – PUSCH, p. 124, PI. 11, Fig. 3.
1852 Cassis saburon LAM. – EICHLIAR, p. 2, PI. 7, Fig. 24.
1853 Cassis saburon LAM. – EICHLIAR, p. 173.
1896 Cassis (Cassidea) saburon ADANS. var. laevigata DEFRI. – BOETTGER, p. 58.
1902 Semicassis (Semicassis) saburon ADANS. – BOETTGER, p. 24.
1911 Cassis saburon LAM. – FRIEDBERG, p. 112, PL. 6, FIG. 3.
1936 Semicassis (Semicassis) miolaevigata SACCO – BOGSOCH, p. 75, PL. 3, FIG. 13.
1983 Phalium (Semicassis) miolaevigata SACCO – ATANACKOVÍC, p. 71, PL. 12, FIG. 7.
1986 Phalium (Semicassis) saburon miolaevigatum SACCO, 1890 – STRAUSS, p. 244, PL. 64, FIG. 4, PL. 72, FIGS. 15–17, PL. 73, FIGS. 1–5.
1998 Phalium (Semicassis) miolaevigatum – HINCULOV, p. 138, PL. 34, FIG. 3.
1971 Cassis (Semicassis) saburon (LAM.) – EREMIA, p. 38, PL. 9, FIGS. 4–5.
1995 Semicassis (Semicassis) miolaevigata SACCO, 1890 – BALUK, p. 203, PL. 16, FIGS. 1–4.
2002 Phalium (Semicassis) miolaevigata SACCO, 1890 – HARZHAUSER, p. 91, PL. 5, FIGS. 18–19.
2003 Semicassis miolaevigata SACCO, 1890 – ÇERANKA & ZLOTNIK, p. 494, TEXT.-FIGS. 2 A–B.
2004 Semicassis laevigata (DEFRANCE, 1817) – LANDAU et al., PL. 3, FIGS. 1–2 (cum syn.).
2004 Semicassis (Semicassis) miolaevigata SACCO, 1890 – SCHNETTER, p. 94, PL. 5, FIG. 7.
Material: 200+ specimens. Largest height 72.1 mm, width 63.0 mm. All localities given below by HÖRNES (1856, p. 692) plus SöOß (20+), Traiskirchen (20+), Mattersburg (2), Walbersdorf (5), Pötzleinsdorf (5), Guntersdorf (5), Mikulov (3), Bulhary (= Pulgrum) (3), Lápugiu de Sus (= Lapugy) (20+).
Description: See LANDAU et al. (2004, p. 48).
Discussion: As discussed by LANDAU et al. (2004), these Paratethyan Miocene shells have usually been identified as Semicassis micenica SACCO, 1890. Whilst the shells in the NHMW collection tend to be broader and thicker than typical Pliocene Mediterranean shells of Semicassis laevigata (DEFRANCE, 1817), with a more thickened labral varix, a whole range of variability can be observed within the Paratethyan specimens, and they intergrade with typical Pliocene S. laevigata.
Distribution (Paratethys; for complete distribution see LANDAU et al. [2004, p. 49]):
- Early Miocene Paratethys (Karpatai): Austria: Kleinebersdorf, Karnabrunn, Laa an der Thaya; Czech Republic: Slup (HARZHAUSER, 2004).
- Middle Miocene Paratethys (Badenian): Poland: Žukowce, Korytnica, Lipa, Holubica, Jasonów, Podhorce, Olesko, Zborów, Zukowce, Zabiaś, Zaisle, Rydomy, Wolicy, Podol ski (FRIEDBERG, 1911; BALUK, 1995; BALUK & RADWANSKI, 1996); Austria: Grund, Baden, Voslau, Möllersdorf, Grinzling, Forchtenau, Gaining, Enzesfeld, Steinabrunn (HÖRNES, 1852; SCHULTZ, 1998; HARZHAUSER, 2002; 2004); Czech Republic: Mikulov (= Nikolsberg, Kienberg), Bulhary (= Pulgrum) (HÖRNES, 1852; HARZHAUSER, 2004); Hungary: Nógrádzsák (BOGSOCH, 1936), Szob, Letkés (CSEPREGHY-MEZNERICS, 1956); Bosnia: Jazovac (ATANACKOVÍC, 1963, 1985); Romania: Costei, Costeul de Sus (Kostei), Crvieni, Valea Satului (BOETTGER, 1902; IONESI & NICORISI, 1994; HINCULOV, 1968); Bulgaria (KOJUMGIEVA & STRACHNIK, 1960).

Semicassis neumayri (HOERNES, 1875)

(PL. 4, FIGS. 3–5; PL. 10, FIG. 1)
1875 Cassis Neumayri HOERNES, p. 350, PL. 11, FIGS. 11–12.
Syntype A: GBA No.: 1875/001/0011 (HOERNES, 1875, PL. 11, FIGS. 11)
Syntype B: GBA No.: 1875/001/0011 (HOERNES, 1875, PL. 11, FIGS. 12)
Locality typicus: Ottnang, Austria.
Stratum typicum: Lower Miocene clay, silt and fine sand of the Ottnang Formation, Ottnangian stage.
Material: 12 specimens. Maximum height 39.0 mm (incomplete) all from Ottnang.
Description: Shell small for genus, of medium thickness, globose, with short spire. Protoconch dome-shaped, of just under four whorls, with small nucleus. Junction with teleoconch sharply delimited, prosocline. Teleoconch of about three whorls, with periphery at abapical suture on spire whorls. Suture impressed, very narrowly canalicate. Spiral sculpture of two primary whorls on first teleoconch whorl, three on second, with secondary cords in interspaces. Shallow, weakly concave sutureal ramp developing on second teleoconch whorl between adapical primary spiral cord, adjacent to upper suture, and second primary cord, which forms shoulder angle. Axial sculpture of close-set, prosocline growth lines, developed into low ridges on adapical cord. Last whorl 88 % of total height, globose, weakly shouldered, with relatively narrow sutureal ramp, regularly convex below, constricted at base. Spiral sculpture of about 25 flattened, subequal, poorly defined spiral cords, with one secondary thread in each interspace. Prominent varix present on largest specimen 240° before labral varix. Aperture wide, pyriform, approximately 70 % of total height. Outer lip moderately thickened by labral varix, regularly rounded, slightly prosocline in profile, bearing several weakly developed denticles inside. Anal canal poorly developed. Siphonal canal very short, deep, narrow, strongly recurved posteriorly. Parietal callus thickened, expanded, adherent, sharply delimited. Columella weakly exarate, bearing a few irregular folds and tubercles on abapical portion of columellar callus. Columellar callus greatly thickened. Siphonal fasciole very short, rounded, abaxially recurved.
Variability: Material of this species is scant in the NHMW collections and only three of the six available specimens are adult. They are all somewhat antero-dorsally compressed. All are fairly consistent in shape and in the character of their sculpture. A single varix in addition to the labral varix is present on two of the three adult specimens.
Discussion: Semicassis neumayri (HOERNES, 1875) is a very small species of Semicassis found only at the Ottnang locality in Austria. The small size causes taxonomic
problems, as members of the genus *Semicassis* change significantly during ontogeny. All juvenile specimens of *Semicassis* species have much more prominent sculpture than adult specimens of the same species, e.g., spirals over the whole shell when none are present on the adult last whorl, and lots of fine axial ribs that are not present on adults. It is, therefore, possible that *S. neumayri*, simply represents juvenile specimens of another taxon.

However, we have examined a growth series of *Semicassis laevigata* (Defrance, 1817) and none have the axial ribs on the early teleoconch whorls as developed as in *S. neumayri*, nor do they form low ridges on the adapical cord.

Another possible candidate is *Semicassis grateloupi* (Deshayes, 1853), which is characterised by its axial sculpture on the spire whorls often persisting on the adult shells. We have compared the Ottnang shells with a growth series of *S. grateloupi* from the Lower Miocene, Burdigalian of France, and for similar-sized shells *S. grateloupi* is higher-spired, the axial sculpture is far more prominent and the shape of the last whorl is different, less inflated than in *S. neumayri*. Moreover, there is no verified occurrence of *S. grateloupi* in the Paratethyan Miocene.

S. neumayri differs from the slightly older *Semicassis subsulcosa* (Hörnes & Auinger, 1884) in having a smaller shell, a more-globose last whorl with a narrow sutural ramp and more numerous, flattened, rather poorly differentiated spiral cords rather than the prominent rounded rib and more numerous, flattened, rather poorly differentiated spiral cords seen in *S. subsulcosa*. Unfortunately we do not have a growth series of *S. subsulcosa*, but there is no trace of axial ribbing on any of the specimens examined.

Although it is possible that *S. neumayri* is based on juvenile shells of another species, the available specimens do not match juvenile shells of any known *Semicassis* species. We therefore consider it a distinct species endemic to the Paratethyan Ottnangian, which is not surprising considering the high endemicity of the marine Ottnangian mollusc fauna (Harzhauser & Piller, 2007).

Distribution:
- Early Miocene Paratethys (Ottnangian): Austria: Ottnang (Hörnes, 1875; Hörnes & Auinger, 1884; Steininger, 1973).

Semicassis subsulcosa (Hörnes & Auinger, 1884)

(Pl. 4, Figs. 6–8)

1852 *Cassis sulcosa* Lam. – Hörnes, p. 179, Pl. 15, Fig. 8.
1884 *Cassis sulcosa* hoernes & auinger, p. 156.
1912 *Cassis* (Semicassis) subsulcosa Hoernes et Auinger. – Schaffer, p. 147, Pl. 51, Figs. 8–11.
1958 *Semicassis* (Semicassis) subsulcosa (R. Hörn. et Auing.) – Hözl, p. 217, Pl. 20, Fig. 3.
1966 *Phalium* (Semicassis) subsulcosum Hoernes & Auinger, 1884 – Strausz, p. 244, Fig. 118.
1971 *Semicassis* subsulcosa (R. Hoernes et Auinger 1884) – Steininger, p. 306, Pl. 9, Fig. 8.
1972 *Phalium* (Semicassis) subsulcosum (Hoernes-Auinger, 1879) – Ondrejčková, p. 115.
1973 *Semicassis* subsulcosa (R. Hoernes & Auinger 1884) – Steininger, p. 413, Pl. 5, Fig. 3.

Holotype A: NHMW 1851/VII/100a.

Locus typicus: Loibersdorf, Austria.

Stratum typicum: Lower Miocene, Loibersdorf Formation (Eggenburgian stage).

Material: 6 specimens, only one complete. Maximum height 53.3 mm (spire missing) all from Loibersdorf (Austria).

Description: Shell of medium size and thickness, globose, with short spire. Protoconch eroded in all specimens. Teleoconch of about four whorls, with periphery at abapical suture on spire whors. Suture linear, superficial. Surface of spire whors decoricated in all specimens. Sculpture on penultimate whorl of two or three broad, rounded spiral cords. Last whorl 90% of total height, globose, regularly convex in profile, strongly constricted at base. Spiral sculpture of 15–17 rounded spiral cords, slightly wider at periphery than elsewhere, some narrowing abapically, separated by narrow interspaces. Aperture wide, pyriform, approximately 70% of total height. Outer lip moderately to strongly thickened by labral varix, regularly rounded and slightly prosocline in profile, somewhat flared abapically, extending beyond siphonal canal, bearing 15–16 elongate denticles inside, denticles continuing into aperture. Denticles weakest adapically and more strongly developed on abapical, flared portion of outer lip. Anal canal poorly developed. Siphonal canal very short, deep, narrow, strongly recurved posteriorly. Parietal callus greatly thickened, expanded, adherent, sharply delimited. Columella broadly excavated, bearing a few irregular folds and tubercles on abapical portion of columellar callus. Columellar cal- lus greatly thickened. Siphonal fasciole very short, rounded, abaxially recurved.

Variability: All except one of the specimens in the NHMW collections is laterally distorted to some degree, and material from Loibersdorf is heavily decalcified. The shell shape is fairly constant. However, there is some variability in the character of the cords on the last whorl. The largest specimen has cords of alternating strength around the centre of the last whorl. No varices are present on any of the specimens.

Discussion: In their original description, Hörnes & Auinger (1884, p. 156) referred to the shell illustrated by Hörnes, 1852 (Pl. 15, Fig. 8), which is therefore the holotype, and is illustrated again here (Pl. 4, Fig. 7). *Semicassis subsulcosa* (Hörnes & Auinger, 1884) is found only at a few localities, and seems to be endemic to the Paratethyan Eggenburgian. It is immediately distinguishable from *Semicassis laevigata* (Defrance, 1817) by the characteristic of the spiral sculpture on the last whorl, with strong rounded ribs present over the entire surface rather than a few cords restricted to the areas adjacent to the suture and base as seen in *S. laevigata*. The shell is also more inflated in *S. laevigata*, with a somewhat depressed sutural area not seen in *S. subsulcosa*. The character of the spiral sculpture is more like that of the Atlantic Early and Middle Miocene *Semicassis grateloupi* (Deshayes, 1853) but *S. grateloupi* has no axial sculpture on any specimens we have seen of *S. grateloupi*. Axial sculpture on the spire. We

According to Schaffer (1912), *Semicassis subsulcosa* differs from *S. sulcosa* (= *S. undata* (Gmelin, 1791)) in being smaller, having a much weaker outer lip and narrower spiral cords. One of the specimens figured by Schaffer (1912, Pl. 51, Fig. 10) from Loibersdorf actually has a strongly thickened outer lip, not seen in the photo (NHMW coll.). Hözl (1958, Pl. 20, Figs. 1–2) illustrated two shells from Nonnenwald-Schacht (Penzberg) as *Phalium (Semicassis) grateloupi*, which do show axial sculpture on the spire. We
have found no specimens in the Vienna collections attributable to this species.

Distribution:

Genus: Sconsia GRAY, 1847

Sconsia ottnangiensis (SACCO, 1890) (Pl. 5, Figs. 1–2; Pl. 10, Fig. 2)

1875 Cassidaria striatula BON. – HOERNES, p. 351, Pl. 11, Fig. 13.
1884 Cassidaria (c. Galeoea) striatula BON. – HOERNES & AUINGER, p. 162, Pl. 17, Fig. 14.
1890a Galeodosconsia ottnangiensis SACCO, p. 70.
1893 Sconsia (S.) striatula ottnangensis [sic] (SACCO) – STEININGER, p. 414, Pl. 5, Fig. 2.

Holotype: Collection of Geological Survey GBA 1875/01/12.

Locus typicus: Ottnang, Austria.

Stratum typicum: Lower Miocene clay, silt and fine sand of the Ottnang Formation, Ottnangian stage.

Material: 4 specimens. Maximum height 28.3 mm, all from Ottnang.

Description: Shell small for genus, of medium thickness, globose, with short spire and relatively long siphonal canal. Protoconch slightly heterostrophic, paucispiral, consisting of just under two whorls, with small nucleus. Junction with teleoconch sharply delimited, prosocline. Teleoconch of four whorls, with periphery at apical suture on spire whorls. Suture impressed, very narrowly canalicate. Spiral sculpture of four rounded primary cords on first teleoconch whorl, seven on second, roughly equal in width to their interspaces. On third teleoconch whorl secondary cords develop in interspaces. Last whorl 80% of total height, globose, very weakly shouldered, with relatively wide, poorly delimited sutureal ramp, regularly convex below, strongly constricted at base. Spiral sculpture of about 40 narrow, rounded spiral cords, with a single secondary cord in each interspace on most specimens. Aperture wide, pyriform, approximately 75% of total height. Outer lip moderately thickened by labral varix, slightly flared adapically, sinuous in profile, bearing about eight stout denticles within. Two largest denticles delimit lateral borders of anal and siphonal canals, with larger gap between these and central group of denticles, which are equally spaced and subequal in strength. Anal canal clearly developed, deep. Parietal callus thickened, expanded, adherent, sharply delimited, bearing prominent parietal tooth adapically. Columella excavated in centre, bearing irregular folds along its entire length. Columellar callus moderately thickened. Siphonal canal relatively long for genus, narrow, almost straight, very slightly recurved posteriorly.

Variability: Three of the four specimens present in the GBA and NHMW collections are complete. All are somewhat compressed. They differ slightly in their surface ornament, the cords in one specimen are fine and of subequal strength rather than alternate. The aperture is only visible in two shells. In one the denticles are strongly developed, in the other less so, although the disposition of the denticles is similar.

Discussion: Specimens from the Paratethyan assemblages were originally considered conspecific with those from the Italian Burdigalian identified as Galeodosconsia striatula SACCO, 1890 (note that Cassidaria striatula BONELLI is a manuscript name). SACCO (1890, p. 70) suggested the name Galeodosconsia ottnangiensis for the shells from Ottnang, whilst on the same page including the reference to HOERNES (1875) and HOERNES & AUINGER (1884) within the chresonomy of G. striatula. With the scant material available it is difficult to get a true idea of the variability of this species. However, we agree with SACCO that the Paratethyan form seems to have a more globose last whorl, especially in the adapical portion, than specimens illustrated from the Italian Miocene (SACCO, 1890a, PI. 2, Fig. 27; SACCO, 1904, Pl. 21, Figs. 20–21; FERRERO MORTARA et al., 1984, Pl. 3, Fig. 3). Moreover, in the few illustrations of G. striatula in which the denticles on the inside of outer lip are visible, they seem to be evenly distributed along the inside edge of the outer lip and not as described above. Further material may prove the two to be synonymous, but we provisionally separate the Paratethyan shells as a distinct taxon.

Distribution:
- Early Miocene Paratethys (Ottnangian): Austria: Ottnang (HOERNES, 1875; HOERNES & AUINGER, 1884; STEININGER, 1973).

4.3. Family Ranellidae J.E. GRAY, 1854

Subfamily: Ranellinae J.E. GRAY, 1854

Genus: Ranella LAMARCK, 1816

Ranella olearium (LINNAEUS, 1758) (Pl. 5, Figs. 3–4)

1758 Murex olearium LINNAEUS, p. 748.
1853 Ranella reticularis DESH. – HÖRNES, p. 211, Pl. 21, Figs. 1–2.
1884 Ranella (Apollon) gigantea LAM. – HOERNES & AUINGER, p. 188, Pl. 23, Figs. 1–5.
1995 Argobuccinum (Ranella) giganteum (LAMARCK, 1822) – BALUK, p. 205, Pl. 18, Figs. 9–11.
2004 Ranella olearia (LINNAEUS, 1758) – LANDAU et al., p. 51, Pl. 3, Figs. 5–6 (cum syn.).
2008 Ranella olearia (LINNE, 1758) – CHIRLI & RICHARD, p. 31, Pl. 5, Fig. 4.

Material: Largest (70 mm incomplete). Steinabrunn (1), Soß (3), Forchtenau (4), Vöslau (1), Walbersdorf (1), Grund (2), Rudice (= Ruditz) (4), Jaromiercie (= Jaromierce) (3), Lápugiu de Sus (= Lapugy) (12).

Description and Discussion: See LANDAU et al. (2004, p. 51).

Distribution (Paratethys; for complete distribution see LANDAU et al. [2004, p. 52]):
- Middle Miocene Paratethys (Badenian): Austria: Gainfarn, Grund, Steinabrunn, Soß, Forchtenau, Vöslau, Walbersdorf (HÖRNES, 1853); Czech Republic: Rudice (= Ruditz), Jaromiercie (= Jaromierce) (Hoernes & Auinger, 1884); Romania: Lápugiu de Sus (= Lapugy), Coșteiu de Sus (= Kostej) (Hoernes & Auinger, 1884; Boettger, 1906).

Subfamily: Cymatiinae IREDALE, 1913

We follow BEU (in press) in ranking as genera the groups formerly ranked subgenera of Cymatium (for discussion see BEU, in press).
Genus: **Charonia GISTEL, 1848**

Charonia lampas (LINNAEUS, 1758)

(PI. 5, Figs. 5–7)

1758 Murex lampas LINNAEUS, p. 748.
1853 Triton nodiferum LAM. – HÖRNES, p. 201, PI. 19, Figs. 1–2.
1884 Triton nodiferum LAMK. – HOERNES & AUINGER, p. 173, PI. 21, Fig. 1.
1912 Triton nodiferum LAM. – FRIEDBERG, p. 127, PI. 7, Fig. 3.
1995 Charonia (Charonia) nodifera (LAMARCK, 1822) – BALUK, p. 205, PI. 19, Figs. 1–3.
2004 Charonia lampas (LINNAEUS, 1758) – LANDAU et al., p. 53, PI. 4, Fig. 1 (cum syn.).
2008 Charonia lampas (LINNE, 1758) – CHIRLI, p. 97, PI. 35, Figs. 9–16.

Material: Height 123.9 mm Grund (1) (specimen PI. 19, Fig. 1 of HÖRNES [1856]), height 63.7 mm Baden (2) (specimen PI. 19, Fig. 2 of HÖRNES [1853]) large damaged shell height 203 mm Grund (1, 2 fragments of very large specimens), Vöslau (1), Guntersdorf (2).

Description and Discussion: See LANDAU et al. (2004, p. 54).

Distribution: There has been much discussion in the Paratethyan literature on the identity of the specimens present in the NHMW collections (see LANDAU et al., 2004).

Monoplex corrugatus (LAMARCK, 1816) (i.e., *M. corrugatus*) in having squatter shells, with a shorter siphonal canal and more strongly nodulose axial ribs. They proposed the name *Eutritonium (Lampusia) friedbergi* for the Paratethyan population. Monoplex corrugatus (LAMARCK, 1816) is highly variable and more elongated specimens with longer siphonal canals indistinguishable from Italian Pliocene shells are also present in the Paratethys (see LANDAU et al., 2004).

Monoplex corrugatus (LAMARCK, 1816)

(PI. 6, Figs. 1–2)

1822 Triton corrugatum LAMARCK, p. 181.
1837 Triton leucostoma var. polonica PUSCH, p. 139, PI. 11, Fig. 25.
1853 Triton corrugatum LAM. – HÖRNES, p. 205, PI. 20, Figs. 1–4.
1884 Triton (b. Simpulum) affine DESH. – HOERNES & AUINGER, p. 175, PI. 21, Figs. 12–15.
1902 Triton (Simpulum) affinis DESH. – BOETTGER, p. 25.
1912 Triton affine DESH. – FRIEDBERG, p. 130, PI. 7, Fig. 6.
1950 Cymatium (Lampusia) affine friedbergi COSSMANN-PEYROT – CSEPREGHY-MEZNERICS, p. 398, PI. 1, Figs. 11–12.
1968 Cymatium affine (DESCHAYES, 1832) – ZELINSKAJA, p. 183, PI. 43, Figs. 9–10.
1995 Cymatium (Lampusia) affine (DESCHAYES, 1832) – BALUK, p. 207, PI. 20, Figs. 5–11.
1996 Cymatium (Lampusia) affine (DESCHAYES) – BALUK & RADWAŃSKI, PI. 1, Fig. 4, PI. 4, Fig. 6, PI. 6, Figs. 8–9, PI. 7, Fig. 1.
1998 Cymatium (Lampusia) affine friedbergi COSSMANN-PEYROT – SCHULTZ, p. 62, PI. 24, Fig. 4.
2002 Cymatium corrugatum (LAMARCK, 1816) – GOFAS & BEU, p. 102, Fig. 8A–J.
2004 Cymatium (Monoplex) corrugatum (LAMARCK, 1822) – LANDAU et al., p. 55, PI. 4, Fig. 2 (cum syn.).
2008 Cymatium corrugatum (LAMARCK, 1816) – CHIRLI & RICHARD, p. 32, PI. 5, Fig. 5.
2008 Cymatium corrugatum (LAMARCK, 1816) – CHIRLI, p. 90, PI. 32, Figs. 11–16, PI. 33, Figs. 1–5.

Material: Largest height 90.5 mm. Grund (30+), Braunsdorf (1), Guntersdorf (5), Sóó (3), Pfaffstätten (1), Gainfarn (8), Steinabrunn (10), Vöslau (20+), Forchtenau (6), Szołb (4), Ląpuugi de Sus (= lapugy) (26), Hrušovany (= Grúlbach) (3), Lysice (= Lissitz) (2), Korytnica (10).

Description: See LANDAU et al. (2004, p. 55).

Discussion: COSSMANN & PEYROT (1924) considered the Central European shells to be different from *M. affinis* (DESCHAYES, 1833) (i.e., *M. corrugatus*) in having squatter shells, with a shorter siphonal canal and more strongly nodulose axial ribs. They proposed the name *Eutritonium (Lampusia) friedbergi* for the Paratethyan population. Monoplex corrugatus (LAMARCK, 1816) is highly variable and more elongated specimens with longer siphonal canals indistinguishable from Italian Pliocene shells are also present in the Paratethys (see LANDAU et al., 2004).

Monoplex heptagonus (BROCCHI, 1814)

(PI. 6, Figs. 3–4)

1814 Murex heptagonus BROCCHI, p. 404, PI. 9, Fig. 2.
1853 Triton heptagonum BROC. – HÖRNES, p. 206, PI. 20, Figs. 5–6.
1884 Triton (b. Simpulum) Wimmeri HÖRNES & AUINGER, p. 177, PI. 21, Figs. 17–18.
1912 Triton heptagonum BROCC. – FRIEDBERG, p. 132, PI. 7, Fig. 7.
1950 Cymatium (Ranularia) heptagona vindobonica COSSMANN-PEYROT – CSEPREGHY-MEZNERICS, p. 398, PI. 1, Figs. 5–6.
1960 Cymatium (Ranularia) heptagona var. vindobonica (COSSMANN & PEYROT 1923 [sic]) – KÖJUNGMIEVA & STRACHIMIROV, p. 138, PI. 37, Figs. 6–8.
1966 Cymatium (Ranularia) heptagonum vindobonica COSSMANN & PEYROT, 1923 [sic] – STRAUSS, p. 248, PI. 29, Fig. 7.
1969 Cymatium (Ranularia) heptagona vindobonica COSSMANN et PEYROT – CSEPREGHY-MEZNERICS, p. 24, PI. 7, Figs. 11, 13.
2004 Cymatium (Monoplex) heptagonum (BROCCHI, 1814) – LANDAU et al., p. 58, PI. 4, Fig. 5, PI. 9, Fig. 2 (cum syn.).
2008 Cymatium heptagonum (BROCCHI, 1814) – CHIRLI, p. 94, PI. 34, Figs. 9–16, PI. 35, Figs. 1–2.

Material: Grund (4), Gainfarn (2), Sóó (4), Vöslau (15), Forchtenau (7), Ląpuugi de Sus (= Lapugy) (30+), Korytnica (6).

Description: See LANDAU et al. (2004, p. 59).

Discussion: There has been much discussion in the Paratethyan literature on the identity of the specimens ascribed by several authors to *Monoplex heptagonus* (BROC-
CHI, 1814). Most authors have agreed that the Paratethyan form is not identical to Italian Pliocene specimens. BALUK (1995, p. 208) studied a large series of specimens from the Middle Miocene of Poland and concluded that there was no constant difference between M. affinis (here considered a junior synonym of M. corrugatus) and the Paratethyan shells described as M. heptagonus, and that the latter were not conspecific with BROCHI’s species. However, we have examined HOERNES & AUINGER’S (1884, p. 176) material and much other Paratethyan material in NHMW and comparable material in the Senckenberg Museum, Frankfurt, and found it inseparable from Italian Pliocene material of M. heptagonus. Some of the largest specimens, from Lapugiu de Sus and Costeiu de Sus (Middle Miocene, early Badenian) in Romania, have more obvious median grooves on the spiral cords than in smaller specimens, and some of these have a taller spire and a more heavily ridged aperture than smaller specimens. However, these characters all develop as the shell grows, just as in the closely related Recent species M. exaratus (REEVE, 1844). Triton wimmeri HOERNES & AUINGER (1884, p. 177), from Lapugiu de Sus, Romania, is also a synonym of M. heptagonus (LAN- DAU et al., 2004, p. 59). In our opinion there is no doubt that M. heptagonus is widespread in European Miocene and Pliocene rocks, including throughout the Paratethyan region, and specimens are easily separable from M. corrugatus. For further discussion see LANDAU et al. (2004).

Distribution (for complete distribution see LANDAU et al. [2004, p. 60]):
- Middle Miocene Paratethys (Badenian): Poland: Korytnica (FRIEDBERG, 1912; BALUK, 1995); Austria: Grund, Gainfarn, Sooß, Vöslau, Forchtenau (HÖRNES, 1853; HOERNES & AUINGER, 1884); Hungary: Sámsonház, Méretek (CSEPREGHY-MEZNERICS, 1950); Romania: Lapugiu de Sus (= Lapugy) (HOERNES & AUINGER, 1884, as Triton wimmeri).

Genus: Turritriton DALL, 1904

Turritriton grundensis (HOERNES & AUINGER, 1884) (Pl. 6, Fig. 5)

1884 Triton (d. Simpulum) Grundensis HOERNES & AUINGER, p. 177, Pl. 21, Fig. 16.

Holotype: NHMW Inv. 1851/2/31.

Locus typicus: Grund, Austria.

Stratum typicum: Silt and fine sand of the Grund Formation (lower Middle Miocene, Badenian).

Material: Grund (1) (Holotype height 20.8 mm).

Description: Shell small, solid, squat, with medium-height scalare spine and finely reticulate sculpture. Protoconch missing. Four convex teleoconch whorls preserved, with periphery mid-whorl on spine. Each spine whorl with relatively broad, sloping, sutural ramp; periphery formed by two primary cords of equal strength, whorl profile concave between sutures and cords, and between cords. Suture impressed, canaliculate. Two elevated primary spiral cords on spire whorls, much narrower than their interspaces, with several spiral threads in each interspace. Axial sculpture of 12 rounded, weakly prosocline primary ribs, much narrower than their interspaces, with three secondary ribslets in each interspace. Spiral sculpture overriding axial elements, rendering entire shell surface finely reticulate. Last whorl 75% of total height; strongly shouldered by two primary cords, weakly convex below, somewhat constricted at base. Spiral sculpture on last whorl of secondary cords on sutural ramp, and five sets of cords arranged in groups of three below shoulder, with central primary cord and one secondary cord on either side. Last whorl bearing one varix about 240° before labral varix. Aperture ovate, 54% of total height. Outer lip convex, slightly flared in region of anal canal, thickened by prominent labral varix, bearing six prominent denticles within. Anal canal rounded, delimited medially by prominent parietal tooth. Siphonal canal relatively long, narrow, straight. Columella concave, with two denticles deep inside inner border in the centre and one prominent ridge delimiting lateral border of siphonal canal. Parietal callus thickened, sharply delimited, but weakly expanded, continuous with thickened, adherent columellar callus. Siphonal fasciole elongate, bearing eight spiral cords.

Discussion: This species is represented in the Vienna collections by the holotype alone. It is characterised by its finely reticulate surface sculpture and the spiral cords on the last whorl arranged in groups of three between shoulder and with a raised central cord and a lower one on either side. This sculpture indicates a position in the genus Turritriton, 1904 (LANDAU et al., 2004, p. 60; BEU, 2005, p. 100).

The drawing published by HÖRNES & AUINGER (1879) is not accurate, as it does not convey either the fasciculate nature of the spiral cords or the obvious, fine, regular axial costellae, and the peripheral keel is considerably narrower than the drawing indicates. The two main fasciculate cords around the periphery are closely spaced, as in most material of all the other species assigned by BEU (in press) to Turritriton, and the other main spiral cords are more widely separated and have a single narrow thread in the centre of each spiral interspace, as in all other Turritriton species. Turritriton grundensis has since been recorded correctly from the Korytnica clays (Middle Miocene, Badenian) in the Holy Cross Mountains, Poland, by BALUK (1995: 209, Pl. 20, Figs. 3–4); the specimen in BALUK’s Fig. (1995: Pl. 20, Fig. 3) closely resembles the holotype.

Turritriton grundensis superficially resembles Monoplex heptagonus (BROCHI, 1814), also present in the Paratethyan assemblages, but is immediately distinguished by the character of the surface sculpture, the almost horizontal sutural ramp and canaliculate suture in M. heptagonus, and by the bifid lateral denticles and longer siphonal canal in M. heptagonum.

The presence of the genus Turritriton in the Paratethys is unexpected, as there is no record of the genus in Europe before or after Turritriton. BEU (in press) recognised three distinct species groups within the genus. The more prominently spirally sculptured group of smaller species (T. domingensis (GAAB, 1873) and T. labiosus (WOOD, 1828)) apparently diverged before late Early Miocene time from the group of less strongly sculptured, very similar, slightly larger species (T. grundensis, T. gibbosus (BRODERIP, 1833) and T. kobelti (VON MALTZAN, 1884)), whereas the taller and narrower T. tenuiliratus group (T. tenuiliratus (LISCHKE, 1873) and the doubtfully distinct form T. fittkau PARTH, 1991) seems to have been limited to the Indo-West Pacific province since Miocene time, before joining the Pleistocene–Holocene migrants into the Atlantic. The T. domingensis-labiosus group has a Caribbean and Tethyan distribution, whereas the T. grundensis-gibbosus-kobelti group is limited to the Middle Miocene Paratethys in Europe, and today is limited to the eastern Pacific, western Atlantic and West Africa, with a single record from the Pliocene (?) of Atlantic Colombia (BEU, in press).
It is most unusual amongst the Cymatiinae in the European Neogene assemblages for a species to be represented by so few individuals (a single specimen from Austria, the holotype, and possibly five specimens from Poland; BALUK, 1995, p. 209).

Distribution:
• Middle Miocene Paratheys (early Badenian): Poland; Korytnica (BALUK, 1995); Austria: Grund (HOERNES & AUINGER, 1884).

Genus: **Sassia Bellardi, 1873**

Sassia apenninica (Sassi, 1827) (PI. 6, Figs. 6–7)

1827 *Triton apeninnicum* Sassi, p. 480 (nomen protectum).
1906 *Eutritonium* (Sassia) *apeninnicum* (Sassi) – BoETTger, p. 39.
1966 *Charonia* (Sassia) *apenninica* Sassi, 1827 – STRAUSZ, p. 250, Pl. 30, Figs. 8, 10, 11, Pl. 31, Fig. 1.
1969 *Charonia* (Sassia) *apenninica* Sassi – CSEPREGHY-MEZNERICS, p. 24, PI. 7, Figs. 12, 18.
1995 *Charonia* (Sassia) *apenninica* (Sassi, 1827) – BALUK, p. 206, Pl. 18, Fig. 8.
2004 *Sassia apenninica* (Sassi, 1827) – LANDAU et al., p. 62, Pl. 5, Fig. 1, Pl. 10, Fig. 3, Text-Fig. 3.1 (cum syn.).
2008 *Sassia apenninica* (Sassio [sic], 1827) – CHIRLI & RICHARD, p. 33, PI. 5, Fig. 7.
2008 *Sassia apenninica* (Sassio [sic], 1827) – CHIRLI, p. 99, Pl. 36, Figs. 1–11.

Material: Largest 41.7 mm. Vöslau (20), Mollersdorf (20), Sooß (21), Enzesfeld (4), Gainfarn (1), Steinabrunn (15), Traiskirchen (1), Walbersdorf (15), Lysice (= Lissitz) (5), Jaromieriec (= Jaroměříč) (10).

Description and Discussion: See LANDAU et al. (2004, p. 63).

Distribution (Paratheys; for complete distribution see LANDAU et al. [2004, p. 64]): Middle Miocene Paratheys (Badenian): Poland; Korytnica (BALUK, 1995); Austria: Baden, Sooß, Vöslau, Mollersdorf, Steinabrunn, Gainfarn, Traiskirchen, Walbersdorf (HÖRNES, 1853; HOERNES & AUINGER, 1884); Czech Republic: Jaromieriec (= Jaroměříč), Porstendorf (= Borsov), Lysice (= Lissitz) (5), Jaromieriec (= Jaroměříč) (10).

Description and Discussion: See LANDAU et al. (2004, p. 63).

Material: Largest height 51.8 mm. Gainfarn (20+), Baden (2), Vöslau (4), Steinabrunn (22), Sooß (2), Traiskirchen (2), Ląpu gu de Sus (= Lapugy) (5).

Description: Shell medium-sized for genus, fusiform, very solid, with elevated spire. Protoconch dome-shaped, of 2.75 smooth, convex whorls, with small nucleus. Junction with teleoconch prosocline, sharply delimited. Teleoconch of seven or eight convex whorls. Sculpture impressed, undulating. First teleoconch whorl with sculpture of four very narrow spiral cords and 10 raised, rounded axial ribs, each wider than one inter space; axial sculpture overriding spiral cords. From second teleoconch whorl one prominent varix developed per whorl. Spire whorls weakly shouldered from third whorl, with wide, steep sutural ramp. Axial ribs crossing sutural ramp, forming small tubercle at shoulder angle and continuing widened to abapical suture. Abapically, whorls become regularly convex again, both primary spiral and axial sculpture become obsolete, or almost so on penultimate and last whorls; spiral cords only visible just anterior to varices. Surface covered by very fine, indistinct spiral threads and axial growth lines. Last whorl 58–69 % of total height, regularly rounded and constricted at base. Aperture ovate, 41–44 % of total height. Outer lip thickened by labral varix, convex, very slightly flared abapically, bearing seven pointed denticles within, most apadically two larger than those below. Columella concave, bearing irregular folds, and tubercles along entire length and one modest parietal tooth. Parietal callus thin, sharply delimited, weakly expanded. Columellar callus slightly thickened, adherent. Siphonal canal long, narrow, abaxially recurved. Siphonal fasciole long, bearing numerous narrow spiral cords.

Variability: *Sassia turrita* (EICHWALD, 1830) is easily recognised and is distinguished from its congeners by its ten-
dency for the sculpture to become obsolete on the late teleoconch whorls. This is variable, with some species retaining vestiges of the spiral and axial sculpture on the last whorl, as well as a suggestion of two rows of tubercles at the periphery. Juvenile specimens are more strongly sculptured (Pl. 7, Fig. 3), which probably led Baluk (1995, p. 207) to comment that the subadult shells illustrated by A. Janssen (1984, Pl. 58, Fig. 6) from the Miocene North Sea Basin were not this species.

Discussion: The earliest name for this taxon, Tritonium turritum Eichwald, 1830 seems to have been overlooked by subsequent authors. Although the shell was not figured by Eichwald until 1852, there is a valid description of the shell in his earlier publication (EICHWALD, 1830, p. 225). It is unfortunate that the more established name Triton tarbellianum GRATELAUP, 1840 must be replaced, but there are insufficient grounds to argue for GRATELAUP’s taxon to become a nomen protectum under ICZN Article 23.9. Although variable, Sassia turrita is very distinctive and impossible to confuse with any of its congeners. It is also extremely widespread in the European Neogene, and is present in the North Sea Basin, Atlantic and Paratethys, but inexplicably absent from the Mediterranean assemblages. Several taxa have been described from the Lower Miocene of Italy and France for small Sassa species similar to S. turrita, but usually smaller and with even smoother sculpture; Sassia laevigata (de Serres, 1829) (COSMANN & PEYROT, 1924, p. 282, Pl. 16, Figs. 32–33; they include Triton obliquatum BELLARDI & MICHELOTTI, 1840 in the synonymy) is a very distinctive, small, wide, almost smooth species, with weakly gemmate surface sculpture and a small smooth protoconch. Sassia hissingeri (GRATELOUP, 1840) is a very smooth Sassa species from the Lower Oligocene, Rupelian, of Gaas (France) very similar to S. turrita. We have not seen a specimen of this taxon to compare directly.

Distribution:
- Late Oligocene North Sea Basin (Chattian): Germany: Glimmerode, Rumeln, etc. (JANSSEN, 1978).
- Late Oligocene Paratethys (Egerian): Eger (TELEGID-ROTH, 1914).
- Middle Miocene North Sea Basin: Netherlands (VOORTHUYSEN, 1944; LIBERT, 1963; A. JANSSEN, 1984); Belgium (LIBERT, 1952); Germany (KAUTSKY, 1925; ANDERSON, 1964; A. JANSSEN, 1969; WIENRICH, 2001).
- Middle Miocene Atlantic (Langhian): France: Sauvignier (COSMANN & PEYROT, 1924).
- Middle Miocene Paratethys (Badenian): Poland: Dryszczów, H Cindy, Holubicza, Zborów, Żukowce, Stary Począjów, Szukszowce, Zapadnia, Korytnica (FRIEDBERG, 1912; BALUK, 1993); Austria: Gainfarn, Baden, Sooß, Vösau, Möllersdorf, Gumpoldskirchen, Steina-brunn, Nikolsberg, Forchtenau, Traiskirchen (HÖRNES, 1853; HOERNES & AUINGER, 1884); Czech Republic: Mikulov (= Kienberg) (HOERNES & AUINGER, 1884); Hungary: Szob, Letkés (CSEPREGY-MEZERNICS, 1956); Romania: Coșteiu de Sus (= Kostelj) (BOETTGER, 1906), Bahna, southern Carpathians (TITA, 2001); Bulgaria (KOJUMDGIEVA & STRACHIMOIROV, 1960).

Genus: **Cymatiella IREDALE, 1924**

The genus Cymatiella contains the smallest ranellids, few exceeding 20 mm in height, with a relatively tall, straight-sided spire and a short, rounded last whorl and short, open siphonal canal, simple sculpture of spiral and axial ridges, and a correspondingly small, smooth, turbiniform protoconch. This genus seems a suitable position for many of the small, generalised, relatively tall-spired species (BÉU, in press).

Cymatiella tritona (GRATELOUP, 1847)

(Pl. 7, Figs. 4–9; Pl. 10, Fig. 3)

1847 Murex tritoneum GRATELOUP, Pl. 29, Fig. 23.
1847 Triton parvulum MICHELOTTI, p. 249, Pl. 18, Fig. 10.
1853 Triton parvulum MICHELOTTI – HÖRNES, p. 208, Pl. 20, Fig. 12.
1884 Triton (a. Sassia) parvulum MICHIT. – HOERNES & AUINGER, p. 179, Pl. 21, Figs. 19–22.
1902 Triton (Sassia) parvulus MICHIT. – BOETTGER, p. 25.
1904 Triton (Sassia) parvulus MICHIT. – SACCO, p. 38, Pl. 10, Figs. 21–22.
1912 Triton parvulum MICHIT. – FRIEDBERG, p. 132, Pl. 7, Fig. 8.
1924 Euuntinum (Sassia) tritona (GRATELOUP) – COSMANN & PEYROT, no. 826, Pl. 15, Figs. 50–51, Pl. 16, Figs. 21–22.
1954 Charonia (Sassia) parvula (MICHIT.) – CSEPREGY-MEZERNICS, p. 34, Pl. 4, Fig. 15.
1960 Cymatium (Sassia) parvulum (MICHELOTTI 1847) – KOJUMDGIEVA & STRACHIMOIROV, p. 137, Pl. 37, Fig. 11.
1968 Charonia (Sassia) parvula (MICHIT.) – KOVÁCS, p. 130, Pl. 7, Fig. 15.
1968 Charonia (Sassia) parvula MICHELOTTI, 1847 – STRAUSZI, p. 250, Pl. 30, Fig. 9.
1968 Cymatium parvulum (MICHELOTTI, 1847) – ZELINSKAJA, p. 183, Pl. 43, Figs. 11–12.
1986 Sassa tritona (GRATELOUP, 1847) – LOZOUET, p. 367, Pl. 30, Fig. 7.
2001 Cymatiella tritona (GRATELOUP, 1847) – LOZOUET et al., p. 46, Pl. 19, Fig. 2.
2002 Sassa parvula (MICHELOTTI, 1847) – HARZHAUSER, p. 92, Pl. 5, Fig. 17.

Material: Largest 14.1 mm. Lápugui de Sus (= Lapugy) (30+), Forchtenau (7).

Description: Shell very small for genus, fusiform, solid, with elevated spire. Protoconch dome-shaped, of 3.0–3.25 smooth, convex whorls, with small nucleus. Junction with teleoconch prosocline, sharply delimited. Teleoconch of five convex whorls. Suture impressed, undulating. First teleoconch whorl with sculpture of three narrow spiral cords and 10–11 raised, rounded axial ribs, each equal in width to one interspace. Axial sculpture overrides spiral cords, forming slightly thickened, horizontally elongate tubercles at intersections. From second teleoconch whorl one or two prominent varices are present per whorl. On third whorl, adapical primary cord becomes slightly further placed from lower two, and secondary spiral sculpture appears in interspaces. Last whorl 60–65 % of total height, with short, slightly concave sutural ramp, strongly rounded at periphery and weakly constricted at base. Surface sculpture reticulate, with seven or eight spiral cords and 13–15 axial ribs, ribs slightly more prominent than cords. Three to four secondary cords present in each spiral interspace between primary cords, interrupted in places by prominent axial growth lines. Aperture small, ovate, 40–42 % of total height. Outer lip thickened by labral varix, convex, bearing seven pointed denticles within, most adapical two larger than those below, second of which is most strongly developed. Columella concave, bearing one prominent parietal ridge and three or four well-developed folds in abapical portion. Parietal callus thin, poorly delimited, not expanded. Columellar callus slightly thickened, adherent. Siphonal canal short, narrow, slightly abaxially recurved. Siphonal fasciole short, poorly defined, bearing four or five spiral cords.

Variability: **Cymatiella tritona** (GRATELOUP, 1847) has a highly variable little shell, not only in shape, which can be relatively tall and high-spired to squat with an inflated last
whorl, but also in the character of the sculpture, especially the number and strength of the axial ribs. There are also differences between populations (see below).

Discussion: All authors have separated the Middle Miocene Mediterranean and Paratethyan populations under the name *Sassia parvula* (MICHELOTTI, 1847) from the Late Oligocene to Early Miocene French Atlantic populations known as *Sassia tritoea* (GRATELOUP, 1847). LANDAU et al. (2004, p. 65) suggested that the two may in fact represent a single taxon. We have now compared shells from the Early Miocene, Aquitanian of La Peloua, Landes, France (BL coll.) with shells from the Paratethys and see no reason to separate the two. Specimens from the Early Miocene, Lower Burdigalian of Peloua, Sau- cats, France (BL coll.) are a little different in having somewhat squatter shells, with a lower spire and a more inflated last whorl. They also have fewer axial ribs, which are stronger and the dorsum is somewhat gibbose. These are the differences which led KOSSMANN & PEYROT (1924) to separate the two taxa, probably whilst examining shells from the classic locality of La Peloua. However, some Paratethyan shells also have fewer but stronger axial ribs (see HANZHAUSER, 2002, Pl. 5, Fig. 17) and the same applies to the Mediterranean populations (see SACCIO, 1904, Pl. 10, Figs. 21–22).

It is not clear exactly when MICHELOTTI’s work was published. However, the copy of GRATELOUP in the Institute of GNS Science, New Zealand has the foreword by GRATELOUP dated 31st December 1846, which would make the date of publication the entire work. As a precise date is not known for MICHELOTTI’s (1847) work, under ICZN Article 21.3.2 we take the date to be 31st December 1847. Therefore, *Triton canarica* var. lapugy (NHMW coll.); Romania: Lăpușii de Sus (= Lapugy), Costeul de Sus (= Kostej) (HOERNES & AUINGER, 1884; HARZHAUSER, 2002).

Distribution:
- • Early Miocene Atlantic (Aquitanian, Burdigalian): France (LOZOUET, 1986).
- • Early Miocene Atlantic (Aquitanian, Burdigalian): France (LOZOUET et al., 2001).
- • Early Miocene proto-Mediterranean (Burdigalian): Italy: Turin Hills (SACCIO, 1904).
- • Early Miocene Paratethys (Karpatican): Austria: Niederkreuzstätten (HÖRNES, 1853; HOERNES & AUINGER, 1884; HANZHAUSER, 2002).
- • Middle Miocene Paratethys (Badenian): Poland: Wołyn, Żukówce (FRIEDBERG, 1912); Austria: Forchten- au (NHMW coll.); Romania: Lăpușii de Sus (= Lapugy), Costeul de Sus (= Kostej) (HOERNES & AUINGER, 1884; BOETTGER, 1902); Bulgaria (KOJUMDIJEVA & STRACHIMIROV, 1960).
- • Late Miocene Mediterranean (Tortonian): Sant’ Agata (BELLARDI, 1873).

4.4. Family Bursidae THIELE, 1925

Genus: *Bursa RÖDING, 1798*

* **Bursa scrobilator (LINNAEUS, 1758)**
 - (Pl. 7, Figs. 10–11)
 - 1758 *Murex scrobilator* LINNAEUS, p. 749.
 - 1853 Ranella scrobilator *Kiener. – HÖRNES*, p. 212, Pl. 21, Figs. 3–5.
 - 1895 *Bursa (Bufonariella) nodosa* (BORGSON, 1825) – BALUK, p. 210, Pl. 18, Figs. 4–5.
 - 2004 *Bursa scrobilator* (LINNAEUS, 1758) – LANDAU et al., p. 66, Pl. 5, Figs. 3–5, Pl. 10, Fig. 1 (cum syn.).
Description: Shell thick, solid, fusiform, slightly anterodorsally compressed, of moderate size for genus, with elevated spire. Protoconch dome-shaped, of about three smooth, convex whorls, with small nucleus. Junction with teleoconch sharply delimited, prosoclinc. Teleoconch of five whorls, with periphery just above abapical suture on spire whorls. Surface superfiicial, undulating. Sculpture on first teleoconch whorl of two spiral cords with small sharp tubercles. Half a whorl later, two secondary cords with smaller tubercles appear in each interspace. From second whorl, adapical primary cord situated just below upper suture and abapical cord situated a short distance above lower suture; lower cord developing more prominent, pointed tubercles, which form periphery of spire whorls. Surface with secondary reticulate sculpture, formed by extremely fine, elevated riblets and spiral threads of equal strength. On first three to four teleoconch whorls, the varices are aligned directly above each other and continuous, and are positioned at the peripheries. Adapically varix on subsequent whorls becomes staggered and slightly in front of that on preceding whorl. Last whorl 70–72 % of total height, angularly rounded, weakly convex in profile, strongly papillate fine reticulate sculpture. Sculpture of two rows of 10–12 sharp pointed tubercles, situated above and below mid-whorl, with one row of secondary tubercles above shoulder, one row of tertiary tubercles between two primary rows, and alternating rows of secondary and tertiary tubercles below. Aperture ovate, 46–48 % of total height. Outer lip convex, thickened by prominent labral varix, slightly flared in abapical portion, with nine denticles within. Denticles simple, more strongly developed on flared abapical portion. Anal canal deep, narrow, extending adapically to outer edge of labral varix. Siphonal canal relatively short, narrow, slightly adaxially recurved. Columella weakly excavated, with numerous irregular ridges and tubercles along its entire length. Parietal callus weakly thickened, sharply delimited. Columellar callus more strongly thickened, adherent. Siphonal fasciole short, bearing about five beaded cords.

Variability: Paratethyan shells of *Bursa ranelloides* (REEVE, 1844) are characterised by sharp pointed tubercles and very fine secondary reticulate sculpture, which covers the entire shell surface. The type lot of *Ranella austriaca* consists of five shells from Sooß. Three of them are almost identical, conforming to the description given above. The fourth illustrated by HOERNES & AUINGER, 1884, Pl. 23, Fig. 12 (Pl. 8, Fig. 3) is somewhat more elongate, with more rounded, close-set tubercles. However, the sculpture of the early whorls is the same, and the surface is covered in the characteristic secondary sculpture described above.

Discussion: HOERNES & AUINGER (1884, p. 186) placed part of HÖRNES’s *Ranella scrobiculata* (1853, Pl. 21, Figs. 3–5) in their chresonomy of *R. austriaca*. However, the specimens illustrated by HÖRNES are indeed *Bursa scrobiculata* (LINNAEUS, 1758). Several bursid taxa described from the European Neogene need to be discussed and compared. *Ranella tuberosa* BONELLI from the Burdigalian of the Turin Hills in Italy was illustrated by BELLARDI (1873) and SACCÓ (1904). Unfortunately, BONELLI’s name is a manuscript name (see FERRERO MONTARA, 1981; LOZOUET et al., 2001). LOZOUET et al. (2001, p. 41), when reintroduced the name *Ranella tuberosa* GRATELOUP, 1833 for the French Atlantic Late Oligocene and Early–Middle Miocene taxon named *R. subtuberosa* by D’OBRIGNY, 1852 and *Apollon pelouatensis* by COSSMANN & PEYROT, 1924, both of these chreses thus becoming junior synonyms. Unfortunately, we have not seen any of the Turin material, and most of the specimens are poorly preserved. One shell illustrated by SACCÓ (1904, Pl. 11, Fig. 8) as variety *spinosula* MICHELLOTTI, 1847 is very similar to the Paratethyan shells known under the name *B. austriaca* in having two rows of sharply pointed tubercles on the last whorl, although there seem to be fewer tubercles in each row. This shell is quite unlike the shell illustrated as *R. tuberosa* by BELLARDI (1873, Pl. 15, Fig. 7), which is probably conspecific with *Ranella tuberosa GRATELOUP, 1833* (see below). We have insufficient material clearly to define what is meant by *R. tuberosa* BONELLI, or to conclude how many taxa are present in the Early Miocene Turin material, however, it is likely that some of the forms are conspecific with *B. austriaca*.

Ranella tuberosa GRATELOUP, 1833 [= *R. subtuberosa* d’ORBYNIGN, 1852; = *Apollon pelouatensis* COSSMANN & PEYROT, 1924 (see LOZOUET et al., 2001)] from the Atlantic Late Oligocene to Early–Middle Miocene of France is of similar size to *B. austriaca*, but is immediately distinguished by its broad rounded tubercles and strongly papillate fine surface sculpture. It is much closer to the Paratethyan shells known as *Ranella papillosa* PUSICH, 1837 (see below). None of the recent workers working with conchological speciﬁcations seem to have compared the fossil *B. austriaca* with extant taxa. The Austrian shells cannot be distinguished from the Recent species *Bursa ranelloides* (REEVE, 1844). The shell of *B. ranelloides* can be somewhat variable, with more or less nodulose specimens and populations present (see COSSIGNANI, 1994, p. 86–87; BEU, in press). The Austrian material has a higher proportion of coarsely nodulose specimens than in most modern population, other than the shallow-water population in southern Japan, which might reflect their living in quite shallow waters. Unfortunately, no data on the Austrian paleoenvironment are available. At the Baden-Sooß section nearshore taxa have been transported into deeper b sideline settings and it is impossible to separate the specimens in the historical collections according to their paleoenvironment. Most modern specimens of *B. ranelloides* is quite unlike the shell illustrated as *R. tuberosa* by BELLARDI (1873) and SACCÓ (1904, Pl. 11, Fig. 8) as variety *spinosula* MICHELLOTTI, 1847 is very similar to the Paratethyan shells known as *Ranella tuberosa GRATELOUP, 1833* (see below). We have insufficient material clearly to define what is meant by *R. tuberosa* BONELLI, or to conclude how many taxa are present in the Early Miocene Turin material, however, it is likely that some of the forms are conspecific with *B. austriaca*.
Bursa corrugata (PERRY, 1811)

(Pl. 8, Figs. 7–10; Pl. 10, Fig. 5)

- **1811** Biplex corrugata PERRY, Pl. 5, Fig. 1.
- **1822** Ranella semigranosa Lamarck, p. 153.
- **1833** Ranella caelata BRODERIP, p. 179.
- **1835** Ranella caelata BROAD, G.B. SOWERBY II, Pl. 33, Fig. 1.
- **1837** Ranella papillosa PUSCH, p. 139, Pl. 12, Fig. 7.
- **1841** Ranella semigranosa Lamarck, p. 11, Fig. 2.
- **1844** Ranella ponderosa REEVE, Pl. 3, Fig. 10.
- **1960** Bursa (Bursa) corrugata (PERRY, 1811) – COELHO & MATTHEWS, p. 51, Figs. 9–10.
- **1971** Bursa caelata BRODERIP, 1833 – KEEN, p. 508, Fig. 94.
- **1974** Bursa corrugata (PERRY, 1811) – ABBOTT, p. 167, Pl. 7, Fig. 1780 (as B. caelata in Pl. caption).
- **1975** Bursa corrugata (PERRY, 1811) – WARMKE & ABBOTT, 103, Pl. 18m.
- **1960** Bursa (Lampasopsis) papillosa (PUSCH, 1837) – KOJUMOGLIEVA & STRACCHIMIROV, p. 141, Pl. 38, Fig. 10.
- **1962** Bursa (Colubrellina) corrugata PERRY, 1811 – KAESER, p. 64, Fig. 102.
- **1968** Bursa (Colubrellina) corrugata (PERRY, 1811) – COELHO & MATTHEWS, p. 51, Figs. 9–10.
- **1971** Bursa caelata Broderip, 1833 – KEEN, p. 508, Fig. 94.
- **1974** Bursa corrugata (PERRY, 1811) – ABBOTT, p. 167, Pl. 7, Fig. 1780 (as B. caelata in Pl. caption).
- **1975** Bursa (Colubrellina) corrugata (PERRY, 1811) – ROSEWATER, p. 18, Fig. 8.
- **1975** Bursa corrugata (PERRY, 1811) – RIOS, p. 81, Pl. 22, Fig. 330.
- **1977** Bursa papillosa REEVE, 1844 – BURNAY & MONTEIRO, p. 34, Fig. 27.
- **1983** Bursa (Colubrellina) corrugata (PERRY, 1811) – H. & E. VOKES, p. 23, Pl. 11, Fig. 13.
- **1984** Bursa corrugata (PERRY, 1811) – BERNARD, p. 64, Fig. 102.
- **1985** Bursa (Colubrellina) corrugata (PERRY, 1811) – RIOS, p. 79, Pl. 28, Fig. 345.
- **1985** Bursa (Colubrellina) corrugata corrugata (PERRY, 1811) – BURBAY, p. 64.
- **1985** Bursa (Colubrellina) corrugata ponderosa (REEVE, 1844) – ABBOTT, p. 64.
- **1985** Bursa (Colubrellina) corrugata pustulosa (REEVE, 1844) – BURBAY, p. 64.
- **1985** Bursa (Colubrellina) corrugata pustulosa (REEVE, 1844) – MAMCHETON & BURBAY, p. 64.
- **1991** Bursa (Colubrellina) corrugata corrugata (PERRY, 1811) – COSSIGNANI, p. 69.
- **1991** Bursa (Colubrellina) corrugata pustulosa (REEVE, 1844) – COSSIGNANI, p. 70.
- **1994** Bursa (Colubrellina) corrugata pustulosa (REEVE, 1844) – COSSIGNANI, p. 71-72.
- **1994** Bursa (Colubrellina) corrugata ponderosa (REEVE, 1844) – RIOS, p. 92, Pl. 31, Fig. 363.
- **1995** Bursa corrugata (PERRY) – PAULMIER, p. 9, Fig. 22.
- **1995** Bursa corrugata (PERRY, 1811) – DIAZ & PUYANA, p. 174, Fig. 649.
- **1995** Bursa (Bursa) papillosa (PUSCH, 1837) – BALK, p. 209, Pl. 18, Figs. 1–3.
- **1999** Bursa corrugata corrugata (PERRY, 1811) – HICKMAN & FIGUEROA, p. 73, Fig. 66.
- **2000** Bursa (Bursa) corrugata pustulosa REEVE, 1844 – GUERRERO & REINER, p. 118–119.
- **2001** Bursa (Colubrellina) corrugata ponderosa (REEVE, 1844) – REIFENRITZ, p. 57, Pl. 29, Fig. 246A-B.
- **2001** Bursa (Colubrellina) granularis cubaniana (‘O’RIGNY, 1842) – MACSOTAY & CAMPOS VILLARROEL, p. 70, Pl. 13, Fig. 5 (non Bursa granularis RÖDING, 1798).
- **2004** Bursa corrugata pustulosa (REEVE, 1844) – ARDISINI & COSSIGNANI, p. 132, upper right Fig. and central left 2 Figs.
- **2007** Bursa (Colubrellina) corrugata corrugata (PERRY, 1811) – KAISER, p. 39, Pl. 26, Fig. 6a-b.

Material: Largest 45.4 mm. Lápugui de Sus (= Lapugy) (28), Vöslau (1).

Description: Shell thick, solid, fusiform, slightly antero- dorally compressed, of moderate size for genus, with elevated spine. Protoconch dome-shaped, of 3.5 smooth, convex whorls, with small nucleus. Junction with teleoconch sharply delimited, prosocline. Teleoconch of 4–5 whorls, slightly more numerous smaller tubercles below apical suture. Entire surface covered with small rounded papillae. On first three to four teleoconch whorls, the varices are aligned directly above each other and continuous, and are positioned at the peripheries. Adapically varix on subsequent whorls becomes staggered and is situated slightly in front of that on preceding whorl. Last whorl approx. 73% of total height, angularly convex in profile, strongly constricted at base. Sculpture of one row of small tubercles immediately below adapical suture, one row of another, stronger tubercles at periphery, third row of smaller tubercles at height of anal canal, and two further rows of alternating strength below. Aperture ovate, approximately 46% of total height, outer lip convex, thickened by prominent labral varix, denticulate within. In fully thickened specimens denticles arranged in...
two rows, parallel to outer margin of lip, i.e., one exterior to the other, with narrow, smooth area between rows. Denticles simple, subequal in strength, except for one more prominent, adapical denticle delimiting lateral border of anal canal. Anal canal relatively deep, narrow, extending adapically almost to outer edge of labral varix. Siphonal canal relatively short, narrow, slightly adaxially recurved. Columella almost straight, with numerous irregular ridges and tubercles along its entire length. Parietal callus weakly thickened, sharply delimited in most specimens. Columellar callus more strongly thickened, adherent. Siphonal fasciole short, bearing about nine beaded cords.

Variability: The Paratethyan specimens, originally described as *Bursa papillosa* (PUSCH, 1837), are characterised by their rounded tubercles, three primary rows of tubercles on the last whorl, with a single row of secondary tubercles intercalated, and very fine secondary papillate sculpture, which covers the entire shell surface. The shoulder row of tubercles is more strongly developed, but less distinctly so than in other European Neogene genera. BALUK (1995) noted that his specimens from Koryntica were not particularly variable and we agree with this observation based on the series from Lăpușu de Sus.

Discussion: *Bursa papillosa* (PUSCH, 1837) (= *Bursa corrugata* (PERRY, 1811)) is easily distinguished from *Bursa australiaca* (HOERNES & AUINGER, 1884) (= *Bursa ranelloides* (REEVE, 1844)) in the character of the tubercles on the last whorl; rounded in *B. papillosa*, pointed in *B. australiaca*. *Bursa papillosa*, as the name suggests, has its entire surface covered in papules, or pustules, whereas the secondary sculpture in *B. australiaca* is finely reticulate.

Once again, none of these fossil taxa have been compared to Recent bursids. There is no discernable difference between the fossil shells described as *Ranella papillosa* and the Recent taxon *Bursa corrugata* (PERRY, 1811). We therefore consider *Ranella papillosa* to be a junior subjective synonym of *Bursa corrugata* (PERRY, 1811).

We have not been able to see any of the material from the Burdigalian of Turin described by BELLARDI (1873), as *B. tuberosa* (LAMPASOPSIS) *austriaca* (PUSCH, 1837), are characterised as *B. inaequicrenata* (COSSMANN & PEYROT, 1924) from the Atlantic Early–Middle Miocene of France is a larger species, with the shoulder tubercles more strongly developed and pointed, rather than rounded, and does not have sculpture of alternating primary and secondary rows of tubercles on the last whorl as seen in *B. corrugata*. It is not, therefore, a synonym of *B. corrugata* as suggested by BALUK (1995, p. 209).

As with the previous species, this revision has profound implications for the palaeobiogeography of the species. These Tethyan and Paratethyan Early–Middle Miocene records are now the earliest for the species. Specimens recorded from Miocene and Pliocene localities in the western Pacific as *Bursa corrugata* (e.g., VAN REGTEREN ALTENA, 1942, p. 107; Kendeng beds of Java, Pliocene) have been examined in the RGM, and are all based on *B. granularis*. There are no authentic fossil or Recent records of *B. corrugata* from the Indo-West Pacific region. Records exist for the Middle Pliocene western Atlantic from MEXICO (PERRILLIAT, 1963; BEU, in press) and Pliocene and Pleistocene records for the eastern Pacific of Ecuador and Galápagos Islands (BEU, in press). Today the species has a widespread distribution including the tropical eastern Atlantic (NORDSIECK & GARCIA-TALAVERA, 1979), mid and western Atlantic (ROSEWATER, 1975; ABBOTT, 1974) and eastern Pacific (KEEN, 1971).

These occurrences suggest that both *Bursa corrugata* and *B. ranelloides* had their origins in the Tethys and Paratethys seaways along with some Monoplex species such as *M. corrugatus* as already demonstrated for other invertebrates by HARZHAUSER et al. (2007b) (see also maps in RÖGL [1998]).

Distribution:

- Early Miocene proto-Mediterranean (Burdigalian): Italy: Termo-fourné, Turin Hills (BELLARDI, 1873).
- Middle Miocene Paratethys (Badenian): Poland: Koryntica (FRIEDBERG, 1912; BALUK, 1995); Austria: Vöslau (NHMW coll.), Romania: Lăpușu de Sus (= Lapugy) (HOERNES & AUINGER, 1884); Bulgaria (KOJUMDJEVA & STRACHIMIROV, 1960).
- Pliocene–Pleistocene Pacific: Galápagos Islands (BEU, in press).
- Pleistocene eastern Pacific: Ecuador (BEU, in press).
- Pleistocene Mediterranean: southern Italy: Tyrrenian conglomerate, Reggio Calabria (BEU, in press).
- Holocene western Atlantic: Cubagua Island: Tortuga Formation, Las Calderas Canyon (BL coll.).
- Recent: tropical eastern Atlantic: Canary Islands (NORDSIECK & GARCIA-TALAVERA, 1979) and Mauretania to at least as far south as Gabon (BERNARD, 1984) and Angola (GOFAS et al., 1984, as *B. pustulosa*); mid Atlantic: St. Helena and Ascension Island (ROSEWATER, 1975); western Atlantic: Florida and the Bahamas to northern Brazil (ABBOTT, 1974); eastern Pacific: Panamic western America, from Sonora to northern Peru (KEEN, 1971), Galápagos Islands (HICKMAN & FINET, 1999); for more detailed Recent distribution see BEU, in press.

Genus: *Aspa* H. & A. ADAMS, 1853

Aspa marginita (GMELIN, 1791)

(Pt. 9, Figs. 1–2)

1791 *Buccinum marginatum* GMELIN, 1791, p. 3486.
1853 Ranella marginata BRONG. – HÖRNES, p. 214, Pl. 21, Figs. 7–11.
1884 Ranella (Aspa) marginata MARTINI sp. – HOERNES & AUINGER, p. 190, Pl. 24, Figs. 1–2.
1896 Ranella (Aspa) marginata MART. – BOETTGER, p. 58.
1912 Ranella (Aspa) marginata MART. – FRIEDBERG, p. 125, Pl. 7, Fig. 1.
1954 Bursa (Aspa) depressa (GRATELOUP) – CSEPREGHY-MEZNERICS, p. 34, Pl. 4, Figs. 4, 8.
1960 Aspa (Aspa) marginata (MARTINI 1777) – KOJUMDZIEVA & STRACHIMIROV, p. 142, Pl. 38, Figs. 8–9.
1966 Bursa (Aspa) marginata depressa GRATELOUP, 1840 – STRAUSZ, p. 250, Pl. 29, Figs. 5–6, Pl. 63, Figs. 14–18.
1968 Aspa marginata (MARTINI, 1777) – ZELINSKAJA, p. 184, Pl. 43, Figs. 17–18.
1973 Gyrineum (Aspa) marginatum (BRONGNIART 1823) – STEINNECK, p. 416, Pl. 6, Fig. 1.
1996 Gyrineum (Aspa) marginatum (MARTINI) – BALUK & RADOWIŃSKI, Pl. 2, Figs. 7–8, Pl. 5, Figs. 1, 4, Pl. 7, Fig. 2.
1998 Gyrineum (Aspa) marginatum (BRONGNIART) – SCHULTZ, p. 62, Pl. 24, Fig. 6.
2004 Bufonaria (Aspa) marginata (GMELIN, 1791) – LANDAU et al., p. 60, Pl. 5, Figs. 6–7, Pl. 10, Fig. 2 (cum syn.).
2008 Bufonaria marginata (GMELIN in LINNE, 1791) – CHIRLI & RICHARD, p. 33, Pl. 5, Fig. 8.
2008 Bufonaria marginata (GMELIN in LINNE, 1791) – CHIRLI, p. 105, Pl. 38, Figs. 5–16.
Material: Largest height 54.3 mm. GRATELOUP, p. 214, Pl. 21, Figs. 1–5.

Description: See LANDAU et al. (2004, p. 70).

Discussion: We follow BEU (in press) in ranking

Material: Largest height 55.3 mm. GRATELOUP (21), Coșteiu de Sus (= Lapugy) (HÖRNES & AUINGER, p. 212).

Discussion and Description: See LANDAU et al. (2004, p. 72).

Distribution (Paratethys; for complete distribution see LANDAU et al. [2004, p. 74]):

- Middle Miocene Paratethys (Badenian): Austria: Forchtenau (HÖRNES & AUINGER, 1884); Romania: Lapugy de Sus (= Lapugy) (21), Coșteiu de Sus (= Kostej) (BOETTGER, 1906).

Genus: Personopsis BEU, 1988

Personopsis grasi (d’ANCONA, 1872)

(PI. 9, Figs. 5–7)

2004 Personopsis grasi (BELLARD in d’ANCONA, 1873) – LANDAU et al., p. 74, Pl. 6, Figs. 5–6 (cum syn.).

Material: Largest height 23.5 mm. Grasi (d’Ancona) (6), Forchtenau (2).

Description: See LANDAU et al. (2004, p. 74).

Discussion: Although we have identified the fossil Paratethyan and Recent shells as the Italian Pliocene fossil Personopsis grasi (d’Ancona, 1872), there are some differences between the three groups; the Recent specimens tend to be shorter and wider than the Pliocene shells and have less prominent spiral sculpture (see BEU, 1998, Figs. 67–k). The Paratethyan shells appear smaller and narrower than either the Recent or Italian Pliocene shells and slightly more finely sculptured. Unfortunately, only a few specimens of each group are available to us, but morphometric measurements of height/width and height last whorl/width overlapped in all three groups.

These slight differences, which seem confined to the overall shape of the shell, are possibly habitat-dependent; the Recent specimens have all been found in relatively deep waters (275–480 m [GOFAS & BEU, 2002]), Spadini (1994, p. 285) suggested that D. tortuosa [= D. cancellina (LAMARCK, 1803)] and P. grasi lived in different habitats, the former present in the upper levels of infralittoral and circalittoral environments, whereas the latter was a bathyal species. In Estepona, however, P. grasi has not been found in the deeper-water deposits and both species are found together in the Velerín conglomerates and Eolobilo deposits, which we consider represent infralittoral and circalittoral habitats (LANDAU et al., 2004). These bathymetric differences, at least in some groups such as the Bursidae, result in important changes in shell morphology (see under Bursa ranelloides [REEVE, 1844]). In the Paratethys, both species seem to co-occur and derive from basinal clays for which a water depth of 50–200 m may be expected (RÖGL et al., 2008). How-
ever, as already discussed for *Bursa ranelloides*, it is impossible to affiliate the shells from the historical collections with any particular paleoenvironment.

For further discussion on *P. grasi* see Landau et al. (2004, p. 74); illustrations of extant specimens will be presented in BEU (in press).

Distribution (Paratethys; for complete distribution see Landau et al. [2004, p. 75]):
- *Middle Miocene Paratethys (Badenian): Austria: Forchtenau (Hoernes & Auinger, 1884); Romania: Lâpugiu de Sus (= Lapugy).

5. Distribution of Species in Paratethyan Assemblages

5.1. Diversity versus Stratigraphy

The described tonnoidean gastropods display a distinct pattern of distribution in terms of stratigraphy as well as from the viewpoint of paleogeography (Fig. 1). The Early Miocene gastropod assemblages contain only a few tonnoideans. The Eggenburgian Loibersdorf fauna yields two species of which *Semicassis subsulcosa* (Hoernes & Auinger, 1884) seems to be endemic to the Paratethys. The origin of this species remains enigmatic. Thereafter, the tonnoideans seemingly retreat from the Paratethys during the late Eggenburgian. This might be related to a slight cooling which led to a faunal turnover (Mandic & Steininger, 2003). The still temperate early Ottangian is characterised by low diversity and a largely endemic tonnoidean fauna, with three species. The endemics *Semicassis neumayri* (Hoernes, 1875) and *Scansia ottangiensis* (Sacco, 1890) are only known from the so-called Schlier facies, which represents a conspicuous alternation of bioturbated clay, silt and fine sand that developed in a shallow marine, probably current-influenced depositional environment off the coast (Rupp & Van Huse, 2007). The late Ottangian fauna was influenced by a major drop in sea level, which led to the breakdown of marine conditions in parts of the Paratethys (Rög, 1998). The associated local extinction was termed the Ottangian extinction event (LOEE) by Harzhauser & Piller (2007) and consequently, tonnoideans are locally missing during that time (Text-Fig. 1).

This crisis was overcome during the late Karpitian when the onset of the Mid-Miocene Climate Optimum (MMCO) allowed the first wave of immigrations from the proto-Mediterranean and Atlantic into the Paratethys (Harzhauser et al., 2003). Three species are recorded from that latest Early Miocene time: *Semicassis laevigata* (Defrance, 1817), *Maia orbiculata* (Brocchi, 1814), *Cymatiella tritonea* (Grateloup, 1847). None of these is endemic to the Paratethys and 2 have roots in the Burdigalian of the proto-Mediterranean.

The most outstanding event in Paratethyan tonnoidean diversity is observed in the early Badenian, which corresponds to the beginning of the early Middle Miocene. This phase is the heyday of the MMCO and the northward shift of the climate zones is followed by a northward migration of thermophilic molluscs into the Paratethys (Harzhauser et al., 2003). This early Badenian build-up event (EBBE) is indicated by the arrival of c. 500 gastropod species in the Paratethys (Harzhauser & Piller, 2007). Among these, 20 tonnoidean species are recorded. Only *Turritriton grunensis* (Hoernes & Auinger, 1884) is endemic to the Paratethys at that time. Most others are already known from Burdigalian deposits of Italy or France (Text-Fig. 2). Clearly, the Mediterranean was the source for this immigration, as the Eastern Paratethys did not contain any tonnoideans (see Iljina, 1993).

After that immigration event, the diversity declined successively. Already the middle Badenian seems to lack *Maia orbiculata* (Brocchi, 1814) and *Turritriton grunensis* (Hoernes & Auinger, 1884). The onset of the Miocene Climatic Transition (MCT) is possibly heralded by this minor decline. The late Badenian is already fully affected by the

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Age</th>
<th>Regional Stage</th>
<th>Tonnoidean diversity and endemnicity & Paratethys events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miocene</td>
<td>10</td>
<td>L</td>
<td>Tortonian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarmatian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Badenian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Karpian</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>M</td>
<td>Ottangian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eggenburgian</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>E</td>
<td>Aquitanian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Egerian</td>
</tr>
</tbody>
</table>

Text-Fig. 1.
Tonnoidean diversity in the Paratethys during the Miocene.
A clear forcing by geodynamic and climatic events is evident from the uneven distribution.
MCT and the fauna had to cope with changing oceanographic regimes (BALDI, 2006). These factors possibly caused the observed decline of tonnoidean diversity, which dropped to 14 species.

5.2. The North–South Gradient

A slight north–south gradient is possibly also reflected in the tonnoidean records. The early Badenian was the most tropical phase in the Paratethys. During that time, Korytnica in Poland represents the northern margin of the Paratethys whereas Lăpușul de Sus in Romania is quite a southern locality. Austrian localities such as Grund and Hungarian Varpalota represent an intermediate position. Interestingly, at least 5 species [Galeodea echinophora (LINNÆUS, 1758), Echinophoria hauri (HOERMES & AUINGER, 1884), Cassis postmamillaris Sacco, 1890, Distorsio cancellina (LAMARCK, 1803), Personopsis grasi (D’ANCONA, 1872)] seem to be unknown from the northernmost localities in the Polish foredeep. Similar patterns have been observed within the stromboidean and xenophorid gastropods (HARZHAUSER et al., 2003) and were explained by a sea surface temperature gradient. Based on stable isotope data and the temperature requirements of extant relatives LATAL et al. (2005) and HARZHAUSER et al. (2003; 2007a) calculated minimum SSTs of 16–18°C for the southern and mid-latitude basins of the early Badenian Paratethys, whereas minimum SSTs of c. 14–15°C were estimated for the Polish foredeep.

5.3. Comparison with the Pliocene Tonnoidean Fauna

As discussed above, tonnoideans are well-known for their long-lived, widely distributed species. It is therefore not surprising that at the generic level the composition of the Middle Miocene Paratethyan fauna is not unlike that seen in the Mediterranean in the Early Pliocene, where tropical conditions also prevailed (SILVA & LANDAU, 2007).

<table>
<thead>
<tr>
<th>Paratethyan Tonnoidean Gastropods</th>
<th>Oligocene</th>
<th>Early Miocene</th>
<th>Middle Miocene</th>
<th>Late Miocene</th>
<th>Pliocene</th>
<th>Pleistocene</th>
<th>Holocene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eudolium subintermedium (d’Orbigny, 1852)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malea orbiculata (Brocchi, 1814)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassis postmamillaris Sacco, 1890</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypraecassis cypraeliformis (Bonson, 1852)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galeodea echinophora (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinophoria hauri (Hoernes & Auinger, 1884)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semicassis laevigata (Defrance, 1817)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semicassis neumayri (Hoernes, 1875)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semicassis subsulcata (Hoernes & Auinger, 1884)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sconia ottagramensis (Sacco, 1890)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranella olearium (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charonia lampas (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoplex corrugatus (Lamarck, 1822)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoplex heptagonus (Brocchi, 1814)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turrintron grundsensis (Hoernes & Auinger, 1884)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sassia apeminicola (Sassi, 1827)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sassia turrite (Eichwald, 1830)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymatiella tritonea (Grateloup, 1847)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursa scrobilaris (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursa ranelloides (Reeve, 1844)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursa corrugata (Perry, 1811)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspa marginata (Gmelin, 1791)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distorsio cancellina (Lamarck, 1803)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personopsis grasi (d’Ancona, 1872)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Text-Fig. 2. Stratigraphic ranges of Miocene Paratethyan tonnoidean gastropods. Black bars represent total distribution in the Western Atlantic and the Mediterranean. Grey bars represent Paratethyan occurrences. The ranges are taken from this paper and LANDAU et al. (2004) [note that some ages of Italian localities given as Middle Miocene in LANDAU et al. (2004) have been corrected according to FERRERO MORTARIA et al. (1981) and are now treated as Burdigalian].
However four genera present in the Middle Miocene Paratethys do not occur in the Mediterranean Pliocene.

- **Cassis**: Although well-represented by several taxa in the European Oligocene and Miocene, widespread, and present in the Atlantic, Mediterranean and Paratethys, the thermophilic genus Cassis never re-entered the Mediterranean following the Messinian Salinity Crisis, despite the Early Pliocene Mediterranean waters being tropical in nature.

- **Cymatiella**: The thermophilic genus Cymatiella has a long history in the European Caenozoic deposits, with several species from the Paris Basin Eocene attributable to the genus. In the Neogene it seems to be widespread, with Miocene species recorded from Europe, Australia, Indonesia and the Caribbean (Beu, in press). However, it also seems not to have re-entered the Mediterranean following the Messinian Salinity Crisis.

- **Sconsia**: The thermophilic genus Sconsia is one of the major cassid genera in the Cenozoic rocks of tropical America, but today occurs only in the Caribbean in relatively deep waters (30–200 m) (Beu, in press). In the Neogene it was more widespread, with two species recorded from Indonesia (S. pulchra PANNEKOEK, 1936 and S. martini VAN REGTEREN ALTENA, 1942 [Beu, 2005]), and several species occurred in Europe during Paleogene and Miocene time. There are no European Pliocene records.

- **Turrititon**: The presence of the thermophilic genus Turrititon in the Paratethyan assemblages is problematic, as it is represented by at most half a dozen specimens, it is not recorded anywhere else in the European Neogene, and there is no chronological European record before or after the Middle Miocene. The origin of these specimens is at present unknown.

- **Pisanianura**: There are no representatives of the tonnoidean family Laubierinidae WARÉN & BOUCHET, 1990 in the Paratethyan Middle Miocene, despite the genus Pisanianura ROVERETO, 1899 being present in the Atlantic and Mediterranean from the Late Oligocene to Early Pliocene (LANDAU et al., 2004, p. 51). Today the family occurs in deep waters (Beu, in press), whereas the European fossil specimens are not found in deep water assemblages. However, they are always rare.

6. Conclusions

The tonnoidean gastropod fauna found in the Early and Middle Miocene Paratethys is rich and varied (Text-Fig. 2); 24 species are recorded, of which 9 (37.5 %) are still living at present. Within the Bursidae and Personidae this percentage is even higher at 83 %, whereas the Cassidae and Tongiidae display the lowest number of extant species (10 %; Text-Fig. 2). This is a much higher figure than in the Paratethys as an evolutionary catalyst during the Early Miocene, especially during the short interval of the early Ottnangian (Figs. 1, 2). This fits the observation by Harzhauser & Piller (2007) that endemism is generally highest in the Paratethys during geodynamically active phases, which cause disconnections of sea ways. Three out of four of the endemic taxa are within the subfamily Phalinae. Four species previously thought to be endemic to the Paratethys are shown to be junior subjective synonyms of more widespread taxa: Cassidaria (Galeodes) cingulifera HOERNES & AUINGER, 1884 is a synonym of Eudolium subintermedium (d’Orbigny, 1852), Ranella (Lampas) austriaca HOERNES & AUINGER, 1884 is a synonym of Bursa ranelloides (REEVE, 1844), originally described in the Recent fauna, Ranella papillosa PUSCH, 1837 is a synonym of Bursa corrugata (PERRY, 1811), also originally described in the Recent fauna, and Echinophora homesi SACCO, 1890, described from the Italian Miocene deposits, is a synonym of Echinophora haueri (HÖRNES & ALTENA, 1933).

Several evolutionary lineages are now recognised within the European Neogene tonnoideans involving species that seem clearly phylogenetically linked; i.e. Semicassis laevigata – S. saburon, Monoplex subcorrugatus – M. corrugatus, Aspa subgranulata – A. marginata. Unfortunately, there will always be some degree of subjectivity as to how to define a particular species in the fossil faunas, as the soft parts cannot be examined, and not all authors will agree with our conclusions. However, the detailed study of the protoconchs has in some circumstances helped to distinguish between species (i.e. Cypreaecassis, Aspa subgranulata – A. marginata; LAN- DAU et al. [2004]) and we have retained a distinction at the species level when there is a significant and constant difference between populations that are isolated chronologically or geographically.

The Paratethys seaways seem to have been the source for some of the species discussed. Within the Monoplex subcorrugatus – M. corrugatus lineage, specimens found in the Paratethyan assemblages seem to show intermediate characteristics, but leaning closer to M. corrugatus, and it is probable that the transition between the two species occurred in the Paratethys at the beginning of or during the Middle Miocene. Following the review of the Bursidae occurring in these deposits, the Paratethyan records are now the earliest for the Recent species Bursa ranelloides (REEVE, 1844), which is now widespread in the Atlantic and Indian Oceans (occurring also in Japan and Hawaii, apparently a relic of a formerly widespread distribution) and Bursa corrugata (PERRY, 1811), which is now widespread in the tropical Atlantic and eastern Pacific. These occurrences suggest that both B. corrugata and B. ranelloides had their origins in the Tethys and Paratethys seaways. Nevertheless, the position of the Paratethys as an evolutionary catalyst during the early Middle Miocene should not be overemphasised. Coeval mollusc-bearing Langhian deposits are very rare in the proto-Mediterranean area. Therefore, most of our knowledge of Langhian (= early Badenian) faunas is based on Paratethyan localities.

Acknowledgements

This paper is part of the NECLIME project. Many thanks to Irene Zorn (Geological Survey of Austria, Vienna) and Thomas and Barbara Sperling (Geowissenschaftliche Sammlung des LfU, München) for providing access to material. BL thanks Robert Moolenbeek of the Zoologisch Museum, Universiteit van Amsterdam (The Netherlands) for access to...
the library, Jaap Van de Voort for allowing access to his excellent private collection from the Karaman Basin, Turkey, which will be incorporated in the fossil collections of Netherlands Nationaal Museum van Natuurlijke Historie, Leiden. AGB thanks Philippe Bouchet, Pierre Lozouet and Virginie Héros (MNHN, Paris) for access to the MNHN library and collections, and Bruno Cahuzac (Laboratoire de Recherches at Applications géologiques, Université Bordeaux-1, Talence) for access to collections in Université Bordeaux-1 (including Grateloup’s type collection), Musée d’Histoire Naturelle de Bordeaux, and the private collections of Alain Cluzaud and Jean-François Lesport.
Eudolium subintermedium (d’ORBIGNY, 1852)

Fig. 1: NHMW 1864/I/471.
Height 35 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 17, Fig. 17 as Cassidaria (C.) cingulifera).

Fig. 2: NHMW 1864/I/471.
Height 43 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 17, Fig. 19 as Cassidaria (C.) cingulifera).

Fig. 3: NHMW 1864/I/471.
Height 34 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 17, Fig. 20 as Cassidaria (C.) cingulifera).

Fig. 4: NHMW (no number).
Height 29.5 mm.
Middle Miocene, Badenian, Vöslau, Austria.

Fig. 5: BL coll.
Height 36.8 mm.
Early Pliocene, Zanclean, Lucena del Puerto, Huelva, Guadalquivir Basin, Spain.

Fig. 6: BL coll.
Height 35.5 mm.
Early Pliocene, Zanclean, Lucena del Puerto, Huelva, Guadalquivir Basin, Spain.

Fig. 7: BL coll.
Height 35.1 mm.
Early Pliocene, Zanclean, Banyuls dels Aspres, River Têt, Roussillon, France.

Malea orbiculata (BROCCHI, 1814)

Fig. 8: NHMW 1851/XIII/108.
Height 46 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 16, Fig. 1 as Dolium (Cadium) denticulatum).

Fig. 9: NHMW 1851/XIII/108.
Height 45 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 16, Fig. 2 as Dolium (Cadium) denticulatum).

Fig. 10: NHMW 1851/XIII/108.
Height 29 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 16, Fig. 3 as Dolium (Cadium) denticulatum).

Fig. 11: NHMW 1851/XIII/108.
Height 38 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 16, Fig. 4 as Dolium (Cadium) denticulatum).

All photos NHMW coll. by Alice SCHUMACHER. All photos BL coll. by Bernard LANDAU.
Plate 2

Cassis postmamillaris SACCO, 1890

Fig. 1: Collection of Geological Survey (Coll. No. 1852/14/04).
Height 67.5 mm.
Middle Miocene, Badenian, Gainfarn, Austria (shell illustrated by HÖRNES, 1852, Pl. 14, Fig. 4 as *Cassis mamillaris*).

Fig. 2: NHMW 1854/XXXV/143.
Height 111.0 mm.
Middle Miocene, Badenian, Lăpugiu de Sus, Romania (shell illustrated by HÖRNES, 1852, Pl. 14, Fig. 3 as *Cassis mamillaris*).

Fig. 3: NHMW (no number).
Height 78.0 mm.
Middle Miocene, Badenian, Pötzleinsdorf, Austria (shell illustrated by SCHULTZ, 1998, Pl. 24, Fig. 1 as *Cassis (C.) mamillaris post-
mamillaris*).

Fig. 4: NHMW 1855/XLII/13.
Height 113.0 mm.
Middle Miocene, Badenian, Lăpugiu de Sus, Romania.

All photos NHMW coll. by Alice SCHUMACHER.
Plate 3

Galeodea echinophoria (LINNAEUS, 1758)
Fig. 1: NHMW 1846/37/179.
Height 42.0 mm.
Middle Miocene, Badenian, Baden, Austria (shell illustrated by HÖRNES, 1852, Pl. 16, Fig. 5).

Fig. 2: NHMW 1970/1396/1473.
Height 45.0 mm.
Middle Miocene, Badenian, Marz, Austria.

Cypraeccasis cypraeformis (BORSON, 1820)
Fig. 3: NHMW 1847/37/57.
Height 48.0 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HÖRNES, 1852, Pl. 16, Fig. 1 as *Cassis crumena*).

Fig. 4: NHMW 1857/XIX/83.
Height 31.0 mm.
Middle Miocene, Badenian, Mikulov (= Nikolsburg), Czech Republic (shell illustrated by HÖRNES, 1852, Pl. 16, Fig. 2 as *Cassis crumena*).

Fig. 5: NHMW 1860/I/172.
Height 39.0 mm.
Middle Miocene, Badenian, Mikulov (= Nikolsburg), Czech Republic (shell illustrated by HÖRNES, 1852, Pl. 16, Fig. 3 as *Cassis crumena*).

Echinophoria haueri (HOERNES & AUINGER, 1884)
Fig. 6: Holotype.
NHMW 1865/I/180.
Height 45.0 mm.
Middle Miocene, Badenian, Lăpugiu de Sus, Romania.

Fig. 7: NHMW 2001.
Height 35.0 mm.
Middle Miocene, Badenian, Baden, Austria.

Fig. 8: NHMW 1856/L/445.
Height 35.0 mm.
Middle Miocene, Badenian, Lăpugiu de Sus, Romania.

All photos NHMW coll. by Alice SCHUMACHER.
Semicassis laevigata (DEFRANCE, 1817)
Fig. 1: NHMW 1856/VII/23.
Height 68.0 mm.
Middle Miocene, Badenian, Lăpugi de Sus, Romania.

Fig. 2: NHMW 1857/XIX/82.
Height 75.0 mm.
Middle Miocene, Badenian, Grund, Austria.

Semicassis neumayri (HOERNES, 1875)
Fig. 3: Collection of Geological Survey (Coll. No. 1875/01/11).
Height 14.5 mm.
Early Miocene, Ottnangian, Ottnang, Austria (shell illustrated by HOERNES, 1875, Pl. 11, Fig. 11 and HOERNES & AUINGER, 1884, Pl. 17, Fig. 12).

Fig. 4: Collection of Geological Survey (Coll. No. 1875/01/11).
Height 16.0 mm.
Early Miocene, Ottnangian, Ottnang, Austria.

Fig. 5: NHMW A 719.
Height 25.0 mm.
Early Miocene, Ottnangian, Ottnang, Austria.

Semicassis subsulcosa (HOERNES & AUINGER, 1884)
Fig. 6: NHMW 1850/IX/34.
Height 56.0 mm.
Early Miocene, Eggenburgian, Loibersdorf, Austria (shell illustrated by SCHAFFER, 1912, Pl. 41, Fig. 8 as Cassis sulcosa).

Fig. 7: Holotype.
NHMW 1851/VI/100a.
Height 35.0 mm.
Early Miocene, Eggenburgian, Loibersdorf, Austria (shell illustrated by SCHAFFER, 1912, Pl. 41, Fig. 10).

Fig. 8: NHMW 1851/VI/100b.
Height 35.0 mm.
Early Miocene, Eggenburgian, Loibersdorf, Austria (shell illustrated by SCHAFFER, 1912, Pl. 41, Fig. 11).

All photos NHMW coll. by Alice SCHUMACHER. All photos BL coll. by Bernard LANDAU.
Sconsia ottnangensis (SACCO, 1890)

Fig. 1: Holotype.
Collection of Geological Survey GBA 1875/01/12.
Height 27.0 mm.
Early Miocene, Ottnangian, Ottnang, Austria (shell illustrated by HOERNES, 1875, Pl. 11, Fig. 13 as *Cassis striatula*).

Fig. 2: NHMW 1850/IX/34.
Height 44.0 mm.
Early Miocene, Ottnangian, Ottnang, Austria.

Ranella olearium (LINNAEUS, 1758)

Fig. 3: NHMW 1863/XV/172.
Height 76.0 mm.
Middle Miocene, Badenian, Lăpușiu de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 23, Fig. 3 as *Ranella (Apollo) giganteum*).

Fig. 4: NHMW 1862/XXIX/25.
Height 51.0 mm.
Middle Miocene, Badenian, Lăpușiu de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 23, Fig. 5 as *Ranella (Apollo) giganteum*).

Charonia lampas (LINNAEUS, 1758)

Fig. 5: Collection of Geological Survey (no number).
Height 127.0 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HORNES, 1853, Pl. 19, Fig. 1 as *Triton nodiferum*).

Fig. 6: NHMW 1866/I/640.
Height 58.0 mm.
Middle Miocene, Badenian, Sooß, Austria (shell illustrated by HORNES, 1853, Pl. 19, Fig. 2 as *Triton nodiferum*).

Fig. 7: NHMW 1858/XXVII/135.
Height 36.0 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HORNES & AUINGER, 1884, Pl. 21, Fig. 1 as *Triton nodiferum*).

All photos NHMW coll. by Alice SCHUMACHER. All photos BL coll. by Bernard LANDAU.
Monoplex corrugatus (LAMARCK, 1816)
Fig. 1: NHMW 1852/XII/15.
Height 75.0 mm.
Mid Miocene, Badenian, Grund, Austria (shell illustrated by HÖRNES, 1853, Pl. 20, Fig. 1).

Fig. 2: NHMW 1855/XLV/74.
Height 75.5 mm.
Mid Miocene, Badenian, Steinebrunn, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 12 as Triton (Simpulum) affine).

Fig. 3: NHMW 1854/XXXV/160.
Height 26.0 mm.
Mid Miocene, Badenian, Lăpugiu de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 17 as Triton (Simpulum) wimmeri).

Fig. 4: NHMW 1854/XXXV/160.
Height 33.0 mm.
Mid Miocene, Badenian, Lăpugiu de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 18 as Triton (Simpulum) wimmeri).

Turritriton grundensis (HOERNES & AUINGER, 1884)
Fig. 5: Holotype NHMW 1851/2/31.
Height 28.5 mm.
Mid Miocene, Badenian, Grund, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 16).

Sassia apenninica (SASSI, 1827)
Fig. 6: NHMW 1846/37/197.
Height 40.0 mm.
Mid Miocene, Badenian, Möllersdorf, Austria (shell illustrated by HÖRNES, 1853, Pl. 19, Fig. 3).

Fig. 7: NHMW 1858/XXVII/135.
Height 36.0 mm.
Mid Miocene, Badenian, Möllersdorf, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 7).

Sassia turrita (EICHWALD, 1830)
Fig. 8: NHMW 1851/XIII/5.
Height 48.0 mm.
Mid Miocene, Badenian, Baden, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 8).

Fig. 9: NHMW 1869/I/75.
Height 39.0 mm.
Mid Miocene, Badenian, Sool, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 9).

All photos NHMW coll. by Alice SCHUMACHER.
Sassia turrita (EICHWALD, 1830)

Fig. 1: NHMW A134.
Height 49.0 mm.
Middle Miocene, Badenian, Steinebrunn, Austria.

Fig. 2: NHMW A134.
Height 48.0 mm.
Middle Miocene, Badenian, Steinebrunn, Austria.

Fig. 3: NHMW 1859/XL/16.
Height 23.5 mm (subadult).
Middle Miocene, Badenian, Zalisce, Volhynia, Ukraine.

Cymatella tritonea (GRATELOUP, 1847)

Fig. 4: NHMW 1858/XLIII/32.
Height 15.5 mm.
Middle Miocene, Badenian, Lăpușiu de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 19 as Triton (Sassia) parvulum).

Fig. 5: NHMW 1858/XLIII/32.
Height 16.2 mm.
Middle Miocene, Badenian, Lăpușiu de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 20 as Triton (Sassia) parvulum).

Fig. 6: NHMW 1854/XXXV/157.
Height 13.0 mm.
Middle Miocene, Badenian, Lăpușiu de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 21 as Triton (Sassia) parvulum).

Fig. 7: BL coll.
Height 15.9 mm.
Lower Miocene, Aquitanian, St-Martin-d’Oney, Landes, France.

Fig. 8: BL coll.
Height 13.6 mm.
Middle Miocene, Lower Burdigalian, Le Peloua, Saucats, France.

Fig. 9: BL coll.
Height 12.0 mm.
Middle Miocene, Lower Burdigalian, Le Peloua, Saucats, France.

Bursa scrobilator (LINNEAUS, 1758)

Fig. 10: NHMW 1863/XV/1268.
Height 54.5 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by HÖRNES, 1853, Pl. 201, Fig. 3).

Fig. 11: NHMW 1851/II/40.
Height 34.0 mm.
Middle Miocene, Badenian, Grund, Austria (shell illustrated by Hörnes, 1853, Pl. 201, Fig. 4).

All photos NHMW coll. by Alice SCHUMACHER. All photos BL coll. by Bernard LANDAU.
Bursa ranelloides (REEVE, 1844)

Fig. 1: Lectotype of *Bursa austriaca* (HOERNES & AUINGER, 1884).

- NHMW 1866/XL/190.
 - Height 41.0 mm.
 - Middle Miocene, Badenian, Sooß, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 23, Fig. 10).

Fig. 2: NHMW 1872/XXX/36.

- Height 47.0 mm.
- Middle Miocene, Badenian, Sooß, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 23, Fig. 11).

Fig. 3: NHMW 1872/XXX/36.

- Height 41.0 mm.
- Middle Miocene, Badenian, Sooß, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 23, Fig. 12).

Fig. 4: NHMW 1872/XXX/36.

- Height 43.0 mm.
- Middle Miocene, Badenian, Sooß, Austria.

Fig. 5: NHMW 1847/XXIV/37.

- Height 41.0 mm.
- Middle Miocene, Badenian, Vöslau, Austria.

Fig. 6: NHMW 1872/XXX/36.

- Height 41.0 mm.
- Middle Miocene, Badenian, Vöslau, Austria.
- Detail of surface reticulate secondary sculpture.

Bursa corrugata (PERRY, 1811)

Fig. 7: NHMW 1890/I/154.

- Height 34.0 mm.
- Middle Miocene, Badenian, Lâpugiu de Sus, Romania.

Fig. 8: NHMW 1890/I/154.

- Height 44.0 mm.
- Middle Miocene, Badenian, Lâpugiu de Sus, Romania.

Fig. 9: NHMW 1866/XL/277.

- Height 45.0 mm.
- Middle Miocene, Badenian, Lâpugiu de Sus, Romania.

Fig. 10: NHMW 1890/I/154.

- Height 34.0 mm.
- Middle Miocene, Badenian, Lâpugiu de Sus, Romania.
- Detail of surface reticulate secondary sculpture.

All photos NHMW coll. by Alice SCHUMACHER.
Aspa marginata *(GMELIN, 1791)*

Fig. 1: NHMW 1853/XXVI/29.
 - Height 59.5 mm.
 - Middle Miocene, Badenian, Grund, Austria (shell illustrated by HÖRNES, 1853, Pl. 21, Fig. 7).

Fig. 2: NHMW 1848/XX/14.
 - Height 26.0 mm (subadult).
 - Middle Miocene, Badenian, Baden, Austria (shell illustrated by HÖRNES, 1853, Pl. 21, Fig. 10).

Distorsio cancellina *(LAMARCK, 1803)*

Fig. 3: NHMW 1858/XXXVII/16.
 - Height 66.0 mm.
 - Middle Miocene, Badenian, Lăpugiu de Sus, Romania.

Fig. 4: NHMW 1855/XLIII/23.
 - Height 59.0 mm.
 - Middle Miocene, Badenian, Lăpugiu de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 11 as Triton *(Distorsio = Persona) tortuosa)*.

Personopsis grasi *(d’ANCONA, 1872)*

Fig. 5: NHMW 1847/XXV/20.
 - Height 21.0 mm.
 - Middle Miocene, Badenian, Lăpugiu de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 22, Fig. 14).

Fig. 6: NHMW 1847/II/475.
 - Height 23.5 mm.
 - Middle Miocene, Badenian, Forchtenau, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 22, Fig. 15).

Fig. 7: NHMW 1847/XXV/20.
 - Height 22.0 mm.
 - Middle Miocene, Badenian, Lăpugiu de Sus, Romania.

Echinophoria haueri *(HOERNES & AUINGER, 1884)*

Fig. 8: NHMW (no number).
 - Height 45.0 mm.
 - Middle Miocene, Badenian, Sooß, Austria (= Pl. 3, Fig. 6).
 - Detail of protoconch.

All photos NHMW coll. by Alice SCHUMACHER.
Semicassis neumayri (HOERNES, 1875)
Fig. 1: NHMW A 719.
 Height 25.0 mm.
 Middle Miocene, Ottnangian, Ottnang, Austria (= Pl. 4, Fig. 5).
 Detail of protoconch.

Sconsia ottnangensis (SACCO, 1890)
Fig. 2: NHMW 1854/XXIII/11.
 Height 32.0 mm.
 Early Miocene, Ottnangian, Ottnang, Austria.
 Detail of protoconch.

Cymatiella tritonea (GRATELOUP, 1847)
Fig. 3: NHMW 1858/XLIII/32.
 Height 16.2 mm.
 Middle Miocene, Badenian, Lăpușii de Sus, Romania (shell illustrated by HOERNES & AUINGER, 1884, Pl. 21, Fig. 20 as *Triton (Sassia) parvulum*) (= Pl. 7, Fig. 5).
 Detail of protoconch.

Bursa ranelloides (REEVE, 1844)
Fig. 4: NHMW 1872/XXX/36.
 Height 41.0 mm.
 Middle Miocene, Badenian, Sooß, Austria (shell illustrated by HOERNES & AUINGER, 1884, Pl. 23, Fig. 12) (= Pl. 8, Fig. 3).
 Detail of protoconch.

Bursa corrugata (PERRY, 1811)
Fig. 5: NHMW 1890/I/154.
 Height 17.0 mm.
 Middle Miocene, Badenian, Lăpușii de Sus, Romania.
 Detail of protoconch.

All photos NHMW coll. by Alice SCHUMACHER.

Plate: Pls. 1–4, March; PIs. 5–8, April; PIs. 9–12, May; PIs. 13–19, June; Pl. 20, August 1844; see Petit, 2007.

