Shell Accumulations of the Nautilidae Aturia (Aturia) aturi (BAST.) in the Lower Miocene Paratethys (Lower Austria)

ALEXANDER LUKENEDER & MATHIAS HARZHAUSER*)

Contents

Zusammenfassung .. 459
Abstract ... 459
1. Introduction ... 459
2. Geological Setting ... 460
 2.1. Section Obermarkersdorf .. 460
 2.2. Sections Unternalb A & B .. 460
3. Material ... 462
4. Distribution and Palaeobiology ... 463
5. Conclusions ... 463
Acknowledgements .. 464
Plate 1 .. 464
References .. 466

Schalenanhäufungen des Nautiliden Aturia (Aturia) aturi (BAST.) in der untermiozänen Paratethys (Niederösterreich)

Zusammenfassung

Abstract
Sedimentological and palaeoecological studies were carried out in two sections in Lower Austria (Obermarkersdorf and Unternalb). Two significant shell accumulations of the extinct nautilid Aturia (Aturia) aturi are documented. Each of these allochthonous occurrences is situated in the Retz Formation (Lower Miocene; Eggenburgian). The striking abundance of nektic nautilid shells within a littoral to shallow sublittoral mollusc fauna reflects current-induced, post-mortem drifts of the otherwise rather rare cephalopod.

1. Introduction

Two unexpected occurrences of the nautilid Aturia aturi (BASTEROT, 1825) were found during 1998/99 in the Lower Miocene (Eggenburgian) Retz Formation at the villages Unternalb and Obermarkersdorf in Lower Austria. This cosmopolitan species is documented from the Paratethys Sea from the Lower Miozene Eggenburgian stage (STEININGER et al., 1971) to the Middle Miocene Badenian stage (FRITZ & HIDEN, 1994/95) (Text-Fig. 1). According to SCHULTZ (1976) most of the other Austrian occurrences cited as Aturia aturi are rather doubtful. As SCHULTZ states, none of these specimens can be clearly identified with respect to the strict diagnostic features as proposed by

*) Authors’ addresses: ALEXANDER LUKENEDER, Institute of Palaeontology, Althanstraße 14, A 1090 Vienna. a9004013@unet.univie.ac.at.
MATHIAS HARZHAUSER: Museum of Natural History Vienna, Burgring 7, A 1014 Vienna.
Neogene (Eggenburgian to Bade-
nian) occurrences of Aturia aturi and
Aturia cf. aturi in Austria.
1–24 and 27: after SCHULTZ 1976;
21: after Fritz & Hidding 1994/95; 25
and 26: this work.
1 = Vöcklabruck (Upper Austria); 2
= between Timelkam and Vöckl-
bruck (U. A.); 3 = Eisenhub near
Braunau (U. A.); 4 = Brunnenthal
near Scharding/Inn (U. A.); 5 = Neu-
markt-Kallham (U. A.); 6 = Krems-
münster (U. A.); 7 = St. Peter (Low-
er Austria); 8 = Haag (L. A.); 9 =
Steinberg area near Zistersdorf (L.
A.); 10 = Lichtenwarth I near
Schrattenberg (L. A.); 11 = Neu-
markt-Kallham (L. A.); 12 = Laa a.
d. Thaya (L. A.); 13 = Enzers-
dorf near Laa a. d. Thaya (L. A.); 14
= Platt near Retz (L. A.); 15 = Territz-
berg near Korneuburg (L. A.); 16 =
Pötzleinsdorf near Vienna; 17 = Vöslau (L. A.); 18 = Wöllersdorf (L. A.); 19 = Southern Vienna Basin (L. A.); 20 = Walbersdorf near Mattersburg
(Burgenland); 21 = Retznei (Styria); 22 = Burgschleinitz near Eggenburg (L. A.); 23 = Eggenburg (L. A.); 24 = Gauderndorf near Eggenburg (L. A.); 25 =
Unternalb (L. A.); 26 = Obermarkersdorf (L. A.); 27 = Mauer near Melk (L. A.).

Text-Fig. 1.

Text-Fig. 2.

Position of sections Obermarkersdorf and Unternalb, 1 : 100,000.
Map after Roetzl, Mandic & Steininger 1999, modified.

STURANI (1958, 1959) and JUNG (1966). However, the good
preservation and the large number of individuals of the
herein described nautilids supply further evidence of Aturia
aturi s.s. for the Central Paratethys.

The unusual co-occurrence of nectonic nautilids within a
littoral to shallow sublittoral mollusc fauna is a clear in-
dication of current-induced, post-mortem drifts of the
Aturia shells. Comparable shell accumulations of the mod-
er Nautilus pompilius, along the shores of Thailand (TORIYA-
MA et al., 1964) suggest similar floating conditions of both
nautilid genera.

2. Geological Setting

2.1. Section Obermarkersdorf

It is situated about 2.2 km NE from the village Obermar-
kersdorf (Austrian Map 1 : 50,000, sheet 9, Text-Fig. 2).
There, sediments of the Retz Formation occur along a
small crystalline crest, which corresponds to one of the
numerous small islands, characterising the coastal line
along the Bohemian Massif in the area around Retz during
the Upper Eggenburgian. Tectonically, this crystalline
crest forms the north-eastern border of the Obermarkers-
dorf Basin (ROETZEL & HEINRICH, 1999). The dating of the
Retz Formation into the Eggenburgian is based on ostra-
cods (ZORN, 1999); the mollusc fauna allows an even more
exact dating into the upper Eggenburgian (MANDIC &
HARZHAUSER, 1999). Yellow, fine to middle sands cover
the flanks of this crest, while the crystalline core forms the
top. The loose, micaceous sands contain no shelly fauna
but bear grey, calcitically cemented quartz-sandstone
concretions of fine to middle grained sand. These con-
cretions, attaining up to 40 cm in diameter, exhibit a di-
verse mollusc-balanid fauna of the littoral and the shallow
sublittoral environment. Aragonitic shells are completely
dissolved but the remaining moulds exhibit well-pre-
served shell sculptures. Artificial plastic casts of the cav-
ities therefore enabled the identification at the species
level and the reconstruction of the fauna.

Gastropods predominate the taphocoenosis with abundance
and large-sized Diloma (Paroxystele) medeai, Babyloni-
aeburnoides and Ficopsis (Fulguroficus) burdigalensis. These
prevailing species are accompanied by scattered Na-
ticarius tigrinus, Latirus (Latirus) valenciennesi, Turritella doublieri,
and Trigonostoma sp. The gastropods are hardly fragment-
atated, and even the fragile siphos are usually preserved.
Mytilidae prevail among the bivalves, accompanied by
Acanthocardia moeschanum and rare Glycymeris lichteni,
both of which were embedded with partly articulated, gaping
shells (HARZHAUSER et al., 1999). Balanids are also abun-
dant but are largely disarticulated.

The fauna indicates a parautochthonous occurrence of
rocky littoral species mixed with subordinate infaunal
molluscs from the adjacent sandy littoral to sublittoral.

The most remarkable allochthonous component of the
fauna is the Nautilidae Aturia (Aturia) aturi (BASTEROT). With at
least 15 specimens of the cephalopod within one concre-
tion, the species represents one of the most abundant
elements at the section.

2.2. Sections Unternalb A & B

They are situated in two abandoned sand pits SSW of
Unternalb (ÖK 1 : 50,000 sheet 22, Text-Figs. 2 and 3).
During the Eggenburgian the area was part of a shallow
embayment ("Naß-See") (BERNHHAUSER, 1955). "Naß-See"
Text-Fig. 3.
Logs A and B at the outcrop near Unternalb. Arrows indicate position of Aturia (Aturia) aturi-bearing beds; Retz Formation – Late Eggenburgian (Lower Miocene).

Bay” [KROH & HARZHAUSER, 1999]). It was formed as a result of several NNW-SSE directed crystalline crests, projecting as numerous small offshore islands and submarine highs approximately 6 km into the Molasse Basin. Two sedimentary units can still be logged at the sections; the underlying unit I consists of a few meters of whitish to
yellowish, poorly sorted and poorly rounded, immature, coarse quartzsands and sandstones from the Thayabatholith-granite which formed the coast and adjacent hinterland of Nalb Bay. Hanging wall unit II consists of up to 3 m thick, yellowish to greyish, immature fine to medium sand displaying a rapidly changing, patchy bio- and lithofacies. The log Unternalb A represents a proximal section, whereas Unternalb B is separated from the former by a small crystalline ridge and is in a more distal, basinward position. Unit I can be traced in all sections and displays similar lithological and biotic features. The most abundant macrofossils are pectinids such as Pecten hornensis and Apecten praebalbuscula (Mandic & Harzhauser, 1999). Calcitic bivalves such as Anomia ephippium and various ostreids also appear in fair numbers. Venerids and lucinids may also occur, but due to the unfavourable preservation no specific identification is possible. Among the gastropods, Turritella doublieri and the medium-sized Conus cf. mercati prevail. Rare teredinids bivalves, casts of a large Xenophora and remains of the nautilid Aturia aturi complete the list of common molluscs. These mollusc associations are accompanied by a rich echinoderm fauna consisting of at least three irregular echinoids: Spatangus austriacus, Maretia perornata and Echinolampas laurillardi (Harzhauser & Kroh, 1999).

In contrast, the sedimentology and bio-content of unit II are quite different in log B and A. Thus, unit II of log A bears accumulations of balanids, bryozoans, asteroids, regular echinoids, mytilids and glycymerids. The rich mollusc fauna consists of partly articulated shells of Acanthocardioid moeschanum, Pholadomya alpina and Glycymeris fichteli, whereas Balonya eburnoida, Tucita rustica and Ficopsis (Fulguroficus) burdigalensis dominate the gastropod fauna, accompanied by two naticids and the very rare muricid Typhis horridus. More than 15 specimens of Aturia aturi were found in this unit, deriving from an area of about 5 m². In contrast only a single Aturia fragment was found, in the poorly sorted, muddy fine to coarse sands of the distal log B. The mollusc fauna of this unit consists mainly of aequipectinids, turritellids, scaphopods and several species of infaunal bivalves such as Panopea menardi.

3. Material

15 specimens from section Obermarkersdorf, 8 specimens from section Unternalb A, and 1 specimen from section Unternalb B (Text-Fig. 4) are documented. In addition, several fragments and casts were found at section Unternalb A. The poor preservation of the latter specimens allows no specific identification. Nonetheless it seems likely that these fragments derive from Aturia aturi as well.

Classis: Cephalopoda Cuvier, 1795
Subclassis: Nautiloidea Agassiz, 1847
Ordo: Nautilida Agassiz, 1847
Superfamilia: Nautilaceae Blainville, 1825
Familia: Nautilidae Blainville, 1825
Genus: Aturia Bronn, 1838

The genus Aturia is characterized by involute, non-umbilicated, disk-shaped, smooth shells with a siphuncle close to the dorsum and a whorl height against whorl breadth.

Compressed to flattened discoid shell. The aperture is subtriangular and much higher than wide. The flanks converge ventrally with an angle about 20°. The flanks are highly compressed and flattened (Text-Fig. 4). The greatest width of the whorls is in the umbilical region (umbilicus closed). Septae are narrow-spaced, strongly curved, and attain a number of about thirteen in the last whorl. The umbilicus is situated more or less in the middle of the shell. The point of maximal curvature of the lateral saddle is in close position to the lateral lobus (Text-Fig. 5). The siphuncle aperture is well rounded and very small. Lyrae seem to be absent on the outer wall of the casts.

Text-Fig. 4.
Compared dimensions of specimens from Unternalb and Obermarkersdorf (whorl height against whorl breadth).

![Text-Fig. 4](image)

Text-Fig. 5.
Suture lines.

The shells are mainly broken and fragmented - only two steinkerns still bear an intact body chamber. The largest complete specimen has a diameter of 31 mm, while single chamber casts suggest a size about 40 mm. Since the shells are dissolved, only steinkerns and moulds are present, but the excellent preservation of sutures and siphalonic structures allows a dis-

![Text-Fig. 5](image)
tinct identification. Only a single specimen from section Unternalb B bears some fragments of the argonitic shell. In addition, some of the plaster-moulds from Obermarkersdorf exhibit the shell surface and bear even delicate, close-set growth lines.

4. Distribution and Palaeobiology

Aturia evolved at the end of the Cretaceous, and became the most diverse nautiloid genus of the Cenozoic (WARD, 1987). Fossil Aturia can be found from Cenozoic marine deposits on most continents. Aturia, though in most cases rarely common, is worldwide distributed in the Miocene of both hemispheres and is known from remote places such as New Zealand (BEU & MAXWELL, 1990) and West Antarctica (TEICHERT & MATSUMOTO, 1987). The genus persisted to the end of Miocene (TEICHERT & MATSUMOTO, 1987).

Due to the delicate and usually obscured features required to differentiate of Aturia aturi (BASTEROT) from related species such as Aturia cubaensis (LEA), one can seldom rely on occurrence-data of Aturia aturi from the literature. Undoubtedly, warmwater species were distributed during the Lower and Middle Miocene in the Mediterranean and Paratethyan seas and displayed amphiatlantic distribution. Additionally it is clearly recorded from various Miocene localities in the Indo-West Pacific and the Eastern Pacific regions (JUNG, 1966).

Generally, the Cenozoic nautiloids display a higher proportion of rather compressed shell shapes compared to the Jurassic and Cretaceous nautilid record (WARD, 1987). Correspondingly, the genus Aturia develops highly compressed shells. The evolution of the Aturia and Aturoidea group in many ways mimics the initial radiation of the ammonoids in the Devonian Period of the Palaeozoic (WARD, 1987). In both of these groups the evolution of highly compressed shell shapes was accompanied by the formation of more complex septal sutures. Aturia and Aturoidea have septa quite similar in form to mid-Palaeozoic goniatites and modern zoic, the endoceratid nautiloids of the Palaeozoic, and this feature with the clymeniid ammonoids of the Palaeozoic to, at most, half a whorl; shell shapes with short body chambers (generally from a Tertiary nautiloids by emphasizing the role of the septae in buttressing the shell to strengthen the compressed flank thickness. This “stability problem” was solved conventionally in both the Palaeozoic goniatites and the Ter-

5. Conclusions

According to WARD (1987) nautiloids are never abundant in Cenozoic strata but are not rare either. However, the Lower Austrian occurrences furnish evidence that specimens of Aturia can be abundant in special cases and even may form shell concentrations in environments distinctly different from the habitat of the animals.

The described shell accumulations are bound to littoral to shallow sublittoral environments along the coast of the Eggenburgian Paratethys Sea. Since the rocky shores and shallow embayments cannot be expected to have been a suitable habitat for a nectonic, deep-water dwelling cephalopod, the shell accumulations are clearly linked to current-induced, post-mortem drifts of Aturia shells. HAMADA (1964) and TORIYAMA et al. (1964) report comparable shell concentrations for modern Nautilus. Despite REYMENT’s (1958) doubts, that empty shells of fossil cephalopods floated like those of Spirula spirula and the modern Nautilus, we favour the “surface-drift-theory” for the post-mortem drifts of Aturia shells. The studies of HAMADA (1964) and TORIYAMA et al. (1964) on the necroplanktonic features of recent Nautilus-shells provide evidence for postmortem driftings of 3000 km and floats of more than one year, which are reflected in bioerosion and epifaunal settlement. Similarly, SAUNDERS & SPINOSA (1979) recorded a post-mortem drift of a Nautilus shell over a distance of 1000 km (between Palau and Mindanao) in a maximum of 138 days, an average of approximately 7 km per day. The record is held by a floating specimen that drifted ashore after 11 years (ISHII, 1981). These open sea surface drift-routes are strongly associated with currents, whereas nearshore drifts are mainly induced by wind directions. Although the actualistic ecological comparison of Nautilus with the fossil Aturia is complicated by differences in shell outline and suture lines (see above), which may reflect adaptation to different habits, the general drift-behaviour is considered to be identical. This hypothesis is also strongly supported by the observations of KOBAYASHI (1954), who relates the various Cenozoic, nearshore occurrences of Aturia in Japan with the proto-Kuroshio current. As demonstrated by KOBAYASHI (1954) by bottle-float experiments, it is hardly possible to reconstruct the necroplanktonic history of shells in detail. During one of his experiments one bottle arrived after ten months whereas a second bottle reached the same locality after two months. This difference is explained by the complicated interplay of oceanic currents and counter-currents, tidal currents and winds. Correspondingly, the unknown interplay of these factors resulting in the formation of the fossil shell accumulations prevent any detailed reconstruction of palaeo-flumenology or drift routes.

Similar to the Lower Austrian shell accumulations, most of the Japanese findings are classified by KOBAYASHI as embayment type occurrences, representing necroplanktonic floats. He also states that the animals did not inhabit these embayments but on the other hand concludes that
the natural habitat of the population was probably not very far from the localities. This might also be stated for the Eggenburgian *Aturia aturi*. The usually excellent preservation of the shell surfaces (as seen on plaster moulds) indicates a short period of floating. Epifauna as described by Hamada (1964) on *Nautilus* shells and by Seilacher (1960) on ammonoid shells, being characteristic for long floatings, is completely missing on the material from Obermarkersdorf and Unternalb. Similarly heavy exfoliation or abrasion can be excluded since even delicate growth lines are well preserved. Therefore the shells are interpreted to have been transported over a rather short distance from the adjacent Molasse Basin. According to Teichert & Matsumoto (1987) the endogastric position of the sipho in the genus *Aturia* indicates adaptations to deep-water rather than shallow-water environments. Thus the deep Late Eggenburgian Molasse Basin was probably the natural habitat of the *Aturia* population. In contrast, the shallow embayments along the coast acted only as traps for post-mortal drifts.

The transgression which affected the coasts in that region during the Late Eggenburgian and Early Ottangian (Roetzel, Mandic & Steininger, 1999) resulted in a rapid sediment covering of the *Aturia*-bearing strata, and probably explains the preservation of the littoral to sublittoral taphocoenoses. Moreover the slightly heterochronous deposition of the two shell accumulations seems to be linked to this transgression (section Obermarkersdorf is topographically higher and in a somewhat more landward position than Unternalb).

Hence the herein reported mass-occurrences of *Aturia aturi* are always bound to littoral environments, whereas the sublittoral fauna of the distal log Unternalb B bears only a single specimen. This specimen consists only of the early parts of the phragmocone and displays some breakage of the shell surface. As demonstrated by Toriyama et al. (1964), recent *Nautilus* floats easily if the camerate portion of the shell is in a good state of preservation, even when the body chamber is broken. On the other hand, during the floating experiments the *Nautilus* shells sank rather abruptly if the phragmocone is broken. The single, fragmented *Aturia* from Unternalb B therefore had little capacity for drifting. This *Aturia*-occurrence coincides with a thin coquina of the archaeogastropod *Diloma (Paroxystele) amedei*. Kroh & Harzhauser (1999) interpret this layer to represent an allochthonous occurrence of shells which were transported into the shallow basin from an adjoining littoral environment in the course of a storm. This particular nautilid shell was probably damaged during this high-energy event and then transported from the coast to the outer bay (Text-Fig. 6). The energetic conditions along the coast of the investigated area of the Bohemian Massif resulted in a fair percentage of breakage of the body chambers. On the other hand the good preservation of the shell surfaces clearly shows that the fragmentation usually did not affect the phragmocones.

Acknowledgements

Thanks are due to Dr. Kathleen Histon (Geological Survey, Vienna), Dr. Herbert Summesberger and Dr. Ortwin Schultz (Museum of Natural History, Vienna) and Ao. Prof. Dr. Leopold Krystyn (Institute of Palaeontology, Vienna) for their valuable, constructive comments and their help. The study was supported by the RWF (P 13745 Bio and P 13641 Geo).

Plate 1 *Aturia (Aturia) aturi* (Basterot)

Fig. 1: Part of the phragmocone with suture lines. Obermarkersdorf; 2.5 x.
Fig. 2: Same specimen; dorsal position of the sipho. Obermarkersdorf; 2.5 x.
Fig. 3: Lateral view. Unternalb; 3 x.
Fig. 4: Lateral view of one chamber. Unternalb; 2.5 x.
Fig. 5: Lateral view of a specimen with body chamber. Obermarkersdorf; 2 x.
Fig. 6: Lateral view of plastic cast with body chamber. Obermarkersdorf. 2 x.
Fig. 7: Plastic cast on a *Ficopsis burdigalensis*. Obermarkersdorf; 2 x.

Fig. 8: Lateral view of a phragmocone. Obermarkersdorf; 2 x.
Fig. 9: Lateral view of a phragmocone. Unternalb; 2 x.
Fig. 10: Lateral view of a phragmocone with parts of the body chamber. Unternalb; 1 x.
Fig. 11: Lateral view of a phragmocone with parts of the body chamber. Unternalb. 2 x.

All specimens are stored in the collection of the Museum of Natural History, Vienna.
References

