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The geodynamic evolution of the Dinaride Mountains of southeastern Europe is relatively poorly understood,
especially in comparison with the neighboring Alps and Carpathians. Here, we construct a new chronostrati-
graphy for the post-orogenic intra-montane basins of the Central Dinarides based on paleomagnetic and
4OAr/3°Ar age data. A first phase of basin formation occurred in the late Oligocene. A second phase of basin
formation took place between 18 and 13 Ma, concurrent with profound extension in the neighboring Panno-
Keywords: nian Basin. Our paleomagnetic results further indicate that the Dinarides have not experienced any signifi-
Dinarides cant tectonic rotation since the late Oligocene. This implies that the Dinarides were decoupled from the
Adria adjacent Adria and the Tisza-Dacia Mega-Units that both underwent major rotation during the Miocene.
Paleomagnetic review The Dinaride orogen must consequently have accommodated significant shortening. This is corroborated
Chronostratigraphic review by our AMS data that indicate post-Middle Miocene shortening in the frontal zone, wrenching in the central
Intra-montane basins part of the orogen, and compression in the hinterland. A review of paleomagnetic data from the Adria plate,
Dinaride Lake System which plays a major role in the evolution of the Dinarides as well as the Alps, constrains rotation since the
Early Cretaceous to 48 £ 10° counterclockwise and indicates 20° of this rotation took place since the Miocene.
It also shows that Adria behaved as an independent plate from the Late Jurassic to the Eocene. From the Eo-
cene onwards, coupling between Adria and Africa was stronger than between Adria and Europe. Adria con-
tinued to behave as an independent plate. The amount of rotation within the Adria-Dinarides collision
zone increases with age and proximity of the sampled sediments to undeformed Adria. These results signif-
icantly improve our insight in the post-orogenic evolution of the Dinarides and resolve an apparent contro-
versy between structural geological and paleomagnetic rotation estimates for the Dinarides as well as Adria.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction evolution remains limited. After the main orogenic phase in the Eocene, a

suite of intra-montane basins formed on top of the orogenic structure

The Dinarides mountain belt is located on the north-western part of
the Balkan Peninsula, continues southwards into the Albanides, Helle-
nides and Taurides, and forms an integral part of the Alpine-Himalayan
orogenic system. In comparison with the neighboring Alps and Car-
pathians, the Dinarides remain geologically under-explored, mainly due
to the politically complicated situation in the 1990s. Although its Mesozo-
ic and Paleogene pre- and syn-orogenic history has recently received in-
creased attention (Korbar, 2009; Schmid et al., 2008; Ustaszewski et al.,
2008a, 2008b) and efforts have been made to better understand its Mio-
cene stratigraphy (de Leeuw et al., 2010; Jiménez-Moreno et al., 2008,
2009; Mandic et al., 2008, 2010), knowledge on its Neogene geodynamic
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(Hrvatovi¢, 2006; Pamic et al., 1998; Tari-Kovaci¢, 2002) and was occu-
pied by a system of lakes. The exact timing and mechanism of basin for-
mation as well as their paleogeographic history are still poorly
understood. This clearly hampers our insight into the post-orogenic evo-
lution of the mountain belt.

The most recent palinspastic reconstruction of south-eastern Europe
(Ustaszewski et al., 2008a), based exclusively on structural geological
data, attributes a 20° CCW post 20 Ma rotation to the Adriatic plate,
whereas the Dinarides are thought not to have rotated at all. This stands
in marked contrast with the simultaneous 30° CCW of Adria and the
Dinarides inferred from post-middle Miocene paleomagnetic data by
Marton et al. (2002). This apparent discrepancy between structural geo-
logical and paleomagnetic data has a large impact on the rates of short-
ening predicted for the south-western part of our study area
(Ustaszewski et al., 2008a).

Recently, we have used integrated “°Ar/*°Ar and magnetostrati-
graphic dating techniques to construct chronologic frameworks for
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the accumulated lacustrine sediments in various intra-montane basins
of the Dinarides (de Leeuw et al, 2010, 2011a, 2011b; Jiménez-
Moreno et al., 2009; Mandic et al., 2010, 2011). Here, we combine all
individual results to present a complete overview of the timing of the
main phases of intra-montane basin formation. In addition, we use
the paleomagnetic data of these basins to determine the vertical
axis rotations of the Dinarides, and we have measured anisotropy
of magnetic susceptibility (AMS) to identify tectonic stress direc-
tions. These approaches provide improved insight into the post
Early-Middle Miocene geodynamic evolution of the blocks consti-
tuting the Dinarides. A review of the collective Cretaceous to Paleo-
gene paleomagnetic data that is available in the literature builds a
framework for the new Neogene results and shows the pre- and
synorogenic rotation of crustal fragments involved in the collision
of Adria and Tisza-Dacia. The apparent conflict between paleomag-
netic data in the literature and the most recent structural geologic
palinspastic reconstruction (Ustaszewski et al., 2008a) is ultimately
resolved.

2. The intra-montane basins of the Central Dinarides

The Dinarides are located on the convergent plate boundary
separating the Adriatic and Tisza-Dacia micro-plates in the cen-
tral part of the Mediterranean region (Fig. 1). The post-orogenic
evolution of the Dinaride Mountains is characterized by the for-
mation of a large number of intra-montane basins (Pamic et al.,
1998). Oligocene strike-slip faulting in response to movement
on the Peri-Adriatic fault initiated transtensional depressions
(Hrvatovi¢, 2006). In the resulting intra-montane depressions flu-
vial and lacustrine sediments accumulated.

In the middle Miocene, the north-eastern margin of the Dinar-
ides was affected by profound extension in response to the rift-
ing that initiated the Pannonian Basin (Tari-Kovaci¢, 2002). It
largely subsided below the base-level of the adjacent Paratethys;
a Mediterranean sized epi-continental sea that covered large
parts of South-Eastern Europe at that time. In the more central
and western parts of the Dinarides, this extensional phase reacti-
vated Oligocene transpressive structures and consequently trig-
gered the development of a series of lacustrine intra-montane
basins.

According to Hrvatovit (2006), the intra-montane basins contin-
ued to evolve as pull-apart structures. Ili¢ and Neubauer (2005), on
the other hand, relate this phase of subsidence to pure extension par-
titioned in two phases; an early Miocene NE-SW directed phase and
a middle Miocene NW-SE directed phase. Korbar (2009) resorts to
yet another model of basin formation and invokes a wedge top po-
sition in order to explain the close coexistence of lacustrine and
marine environments along the trust front. Formation of such a
large suite of intra-montane basins represents a very marked phase in
the post-orogenic evolution of the Dinarides. The sedimentary se-
quences between 200 and 2500 m thick sedimentary sequences that
accumulated in the interior of the mountain chain can potentially
provide a detailed record of this event. However, due to the strictly
endemic nature of the lacustrine fauna, age inferences remained
tentative. It was consequently hard to assess whether sedimentation
took place syn- or diachronously, despite numerous lithostrati-
graphic correlations (Milojevi¢, 1963; Mufti¢ and Luburi¢, 1963;
Panti¢, 1961). Any correlation with the geodynamic evolution of
Adria and the Pannonian domain was thus also problematic.

3. A chronostratigraphic framework for the Dinaride basins

Recently, high resolution magnetostratigraphic and °Ar/3°Ar stud-
ies were initiated in several of the intra-montane basins (de Leeuw
et al., 2010, 20114, 2011b; Jiménez-Moreno et al., 2009; Mandic et al.,
2010, 2011). Here we integrate these and other data to arrive at a

chronostratigraphic scheme for sedimentation in the intra-montane ba-
sins. An overview of the age and error calculation for the investigated
volcanic ashes can be found in Supplementary Table 1.

3.1. Pag Island (Croatia)

The Island of Pag (Fig. 2) comprises a 120 m thick Miocene
succession exposed along the Crnika Beach (Fig. 3) and repre-
sents the northwestern-most constituent of the Dinaride Lake
System (Buli¢ and JuriSi¢-PolSak, 2009). Magnetostratigraphic
data for the Crnika section revealed a long (113 m) reverse po-
larity interval, followed by a 7 m thick interval of normal polarity
at the top (Jiménez-Moreno et al., 2009). Combined with bio-
stratigraphic constraints based on mollusks and pollen, the mag-
netostratigraphic pattern of the Crnika section was correlated to
chrons C5Cr and C5Cn.3n of the GPTS, between 17.1 and
16.7 Ma (Jiménez-Moreno et al., 2009) (Fig. 3).

3.2. Sinj basin (Croatia)

In the Sinj basin (Fig. 2), a 500 m thick limestone-dominated
succession is well exposed along the Sutina stream near Lucane
in the western part of the basin (Jiménez-Moreno et al., 2008;
Mandic et al., 2008). Several volcanic ash layers intercalate
with the lacustrine sediments and enabled absolute age dating
(de Leeuw et al., 2010) (Table 1). A clear and reliable magnetos-
tratigraphic pattern with 9 reversals was established (Fig. 3),
firmly anchored to the timescale by “°Ar/3°Ar dating of the in-
tercalated volcanic ash layers (de Leeuw et al., 2010). The base
of the section is constrained by the “°Ar/>°Ar age for the Luane
3 tuff layer of 17.91+0.18 Ma (Fig. 3, Table 1). The age of the
very top of the Lucane section is constrained by correlation of
the uppermost normal interval to chron C5Bn.2n, yielding an
age of 15.0 Ma.

3.3. Livno-Tomislavgrad Basin

Two successive lacustrine cycles are found in the Livho-Tomislavgrad
Basin (Figs. 2, 3). Around 1700 m of predominantly marl and lime-
stone constitute the first phase, and an additional 500 m of sedi-
ments constitute the second. The basal part of the sequence is
exposed in the TuSnica section. The Tu$nica volcanic ash is located
within a 10 m thick coal seam bearing proboscidean remains. The
overlying sediments (~1300 m thick) are exposed along the OstroZac
stream. Breccias, derived from the basin margins, first occur in the
upper third and coarsen and thicken upwards in the section to-
wards a mega breccia at the top. A second volcanic ash crops out
along the shores of Lake Mandek. The reverse polarity interval of
the TuSnica section is correlated to chron C5Cr, as constraint by an
40Ar/39Ar age of 17.0040.17 Ma for the Tusnica ash (de Leeuw et al,,
2011b) (Fig. 3; Table 1). The OstroZac section is correlated to the inter-
val between C5Br and C5ABn, in agreement with the “°Ar/*Ar age of
14.68 +£0.16 Ma for the Mandek ash (de Leeuw et al, 2011b). These
correlations suggest an age of approximately 17 Ma for the base, and
12.6 Ma for the top of the Livno succession.

3.4. Gacko basin

The infill of the Gacko basin (Fig. 2) is ~360 m thick in the basin cen-
ter (Mirkovi¢, 1980) and was sampled along a condensed 75 m section
exposed in the Gracanica open pit coal mine. A 1.5 m thick prominent
greenish volcanic ash layer is located in the top part of the section
(Mandic et al., 2010). “°Ar/>°Ar total fusion experiments for two samples
of this ash provided a combined weighted mean age of 15.36 4+ 0.16 Ma.
However, due to a slight amount of excess argon, the 15.3140.16 Ma
isochron age best reflects its crystallization age (Table 1). The reverse
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Fig. 1. Plate tectonic and geologic setting of the Dinarides and surrounding area, adapted from Schmid et al. (2008). The Neogene intra-montane basins as well as our sampling sites,
main faults, major plate boundaries and the direction of movement of the Adriatic Plate are indicated.

polarity interval of the upper part of the Gacko section correlates to C5Br seven transgressive-regressive sequences correspond to ~100 kyr ec-
constrained by a 15.31 4-0.16 Ma age of the Gacko tuff. The basal part of centricity cycles (Mandic et al., 2010). Extrapolation of sedimentation
the succession has an estimated age of 15.85 Ma, assuming that the rates suggests that Lake Gacko disappeared around 15.0 Ma.

Please cite this article as: de Leeuw, A, et al., Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central
Dinarides, Tectonophysics (2012), doi:10.1016/j.tecto.2012.01.004



http://dx.doi.org/10.1016/j.tecto.2012.01.004

A. de Leeuw et al. / Tectonophysics xxx (2012) XxX-xXx

B 40Ar/39Ar ash date

Bl Paleomagnetic Sampling Site

Croatia

B i H Bosnia and

Herzegovina

Dinaride Lake System,
Lower Miocene
Extension after Krstic 2003

Extent of Dinaride Lake System
Affected by the marine
transgression from the Paratethys

Neogene intramontane basins
of the Dinarides

~~~~~~

political boundary

Fig. 2. Map with an overview of the sampling sites. The former extent of the Miocene Dinaride Lake System, the area affected by the Paratethys transgression, as well as the location

of the intra-montane basins is indicated.
3.5. Bugojno and Sarajevo basins

The general quality of the paleomagnetic demagnetization dia-
grams (Supplementary material) was too low to arrive at a reliable
magnetostratigraphy for the Bugojno and Sarajevo basins (Fig. 2).
Both basins, however, bear elephantoid proboscidean remains (Gom-
photherium and Prodeinotherium bavaricum) (Malez and Sliskovic,
1976; Milojevic, 1964). The oldest occurrence of these proboscideans
in Europe has been dated at 17.5 Ma by Palfy et al. (2007) based on
radio-isotopic ages for a tuff that overlies fossil footprint bearing
sandstones and clays with Gomphoterium remains. The oldest dated
occurrence of proboscideans in the Dinarides is at the TuSnica coal
mine in the Livno-Tomislavgrad basin, here dated at 17.0 Ma. The oc-
currence of proboscideans thus indicates that the sections exposed in
the Gracanica coal mine in the Bugojno basin and above the Kakanj
coal seam of the Sarajevo basin are younger than 17.5 Ma. Additional
age constraints in Bugojno come from a number of small mammal
teeth, which pertain to Democricetodon gracilis and Democricetodon
mutilus, associations that are correlated to the upper part of MN4
and MN5 (Wessels et al., 2008), i.e. between 17 and 13.8 Ma (Agusti
et al,, 2001).

3.6. Banovici basin

The infill of the late Oligocene-early Miocene Banovici Basin (Fig. 2)
is approximately 500 m thick. The fauna of Turija mammal site, located
just below the main coal layer of the basin, best compares with localities
from the European MP30/MN1 mammal zones and Anatolian zone B
(de Leeuw et al, 2011a). The magnetostratigraphic pattern of the
167 m long Grivice section reveals a long reversed interval interrupted
by a short interval of normal polarity (Fig. 4), and correlates best to
chrons C6Cr to C6Cn.2r of the GPTS. The MP30/MN1 Turija fauna
would thus correlate with the base of C6Cr indicating an age of approx-
imately 24 Ma.

3.7. Southern Pannonian Basin

In the area of the Southern Pannonian Basin (SPB, Fig. 2) back arc ex-
tension triggered the deposition of a series of continental, alluvial and la-
custrine sediments up to 500 m thick (Paveli¢ et al., 2003) with fauna
very similar to that of the Dinaride Lakes (Mandic et al., 2011). The series
are generally overlain by transgressive marine deposits that indicate a
wide-spread ingression of the Paratethys Sea into the SPB. Two volcanic
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in this figure legend, the reader is referred to the web version of this article.)

ash levels are located at the base and at the top of the continental series,
respectively (Table 1). The weighted mean age for the lower (Glogov-
nica) ash is 18.114-0.06 Ma. Weighted mean ages for the Sjenicak and
Paripovac ashes are 16.00 4 0.09 Ma and 16.00 + 0.07 Ma respectively.
These ages indicate that the SPB continental phase lasted at least 2 Myr
(Mandic et al,, 2011) and that it is largely coeval with the deposition of
lacustrine sediments with similar fauna in the more interior parts of
the Dinarides.

3.8. Ugljevik basin

The coal mine of the Ugljevik basin (Fig. 2), situated at the north-
ern rim of the Dinarides, exposes around 100 m of late Oligocene la-
custrine deposits succeeded by 70m of marine Paratethys
sediments (Vrabac et al., 1995). The small mammal assemblage re-
covered from the lacustrine sediments (Wessels et al., 2008) resem-
bles the Late Oligocene ones from Thrace and Anatolia (Unay et al.,,
2003). Its age is estimated to be late Oligocene but slightly older
then Banovici (Wessels et al., 2008).

Our new chronostratigraphic results indicate an early to middle
Miocene phase of basin formation and lacustrine deposition in the
Central Dinarides (Fig. 3). At this time, the Dinaride Lake System
stretched out from the Southern Pannonian Basin across the

Dinarides as far out as the Pag Island in the north-west and the
Gacko basin in the south-west. Pre-dating this Miocene phase, there
is a late Oligocene phase from which deposits are present in the Ugl-
jevik and Banovici basins. Chronostratigraphic constraints on this ear-
lier phase remain rudimentary.

4. Late Oligocene to middle Miocene paleomagnetic rotation data

The paleomagnetic data also allow determination of the vertical
axis rotation these basins experienced since deposition of their lacus-
trine infill. For the Pag, Sinj, Livno, Tomislavgrad, Gacko and Banovici
basins demagnetization diagrams were of high quality and the estab-
lished paleomagnetic directions are thus also suitable for constraining
their rotation history.

For the Crnika section on Pag (Jiménez-Moreno et al., 2009), 121
directions are available. The vast majority is of reverse polarity and
only 16 directions constitute the short normal polarity interval at
the top of the section. The reversal test fails, because of a number of
low inclination intermediate directions at the base of the short nor-
mal chron. The remaining normal directions are statistically too few
in number. In order to overcome this problem, we have decided to
rely on the 102 directions from the long and extensively sampled re-
versed chron. On these, the VanDamme cutoff (Vandamme, 1994)

Dinarides, Tectonophysics (2012), doi:10.1016/j.tecto.2012.01.004
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Table 1

Overview of “°Ar/3°Ar ages for tuffs intercalated with DLS sediments. Ages printed in bold best represent the respective tuffs crystallization age. For tuffs dated with multiple total
fusion experiments the peak probability density age is listed besides the weighted mean age. The uncertainty in all listed weighted mean ages and the isochron age of the Gacko tuff
includes uncertainties in J, the age of the primary standard and decay constants, as reported in Kuiper et al. (2008) and Steiger and Jager (1977). The other listed uncertainties are
purely analytical. Uncertainties are reported at the 95% confidence level. MSWD is Mean Square Weighted Deviates, N is the total number of repetitions in the single fusion exper-
iments and the total number of steps in the incremental heating experiments. n is the number of experiments used to calculate the weighted mean and isochron age.

Sample Location Method Weighted n/N MSWD  Peak probability Mineral Inverse Inverse Isochron  Reference
mean age (Ma) distribution (Ma) isochron age isochron ~ MSWD
intercept

Livno Basin

Mandek N43 43499  Multiple 14.684+0.16 10/10  2.09 14.7 Feldspar 14.90+0.58 289+18 This study
E017 01 21.6  total fusion

Tu$nica N43 44 25.8  Multiple 17.004+0.17 10/10 1.44 17.0 Feldspar 16.85+0.09 318+11 This study
E017 05 28.2  total fusion

Sinj basin

Lucane 1 N43 43 12.3 Multiple 15.43+0.05 7/10 0.81 1543 Sanidine 1539+£0.09 306419 De Leeuw et al.
E016 35 30.1 total fusion (2010)

Lucane 2 N43 43 23.8 Multiple 16.244+0.16 6/10 0.05 16.23 Sanidine 16.24+£0.07 288443 De Leeuw et al.
E016 3543.1 total fusion (2010)

Lucane 3 N43 43 23.1 Incremental  17.91+0.18 18/36 2.09 Biotite 17.88+0.18 298+2 De Leeuw et al.
E016 36 37.7 heating (2010)

Gacko basin

Gacko N431038.2  Multiple 15.36 +£0.16 17/19 1.66 Feldspar 1531+£0.16 338+12 0.92 Mandic et al.
E18 28 47.6 total fusion (2010)

Pannonian Basin System

Glogovnica N46 0820.3  Multiple 18.11+ 0.06 5 10 18.14 Sanidine 18.07+0.08 368 +45 Mandic et al.
E016 33 01.4 total fusion (2010)

Sjenicak N45 28 49.7  Multiple 16.00 + 0.06 8 10 15.92 Plagioclase/ 16.004+0.09 295412 Mandic et al.
E01550 17.4  total fusion sanidine (2010)

Paripovac N4516 164  Multiple 16.00 + 0.06 6 9 16.06 Feldspar 16.00+0.07 29748 Mandic et al.
E016 14 32.1 total fusion (2010)

was applied and eight outliers were discarded. The remaining 94 di-
rections have an average declination of 182 4 3.3°, and an average in-
clination of —56.54-2.5° (Fig. 8). Bedding planes hardly vary along
the Crnika section and this results in a non-significant Tauxe and
Watson (1994) fold test.

The 221 paleomagnetic directions established for the magnetos-
tratigraphy of the Lucane section in the Sinj basin (de Leeuw et al.,
2010) were subjected to a fold test (Tauxe and Watson, 1994) in
order to test their primary origin. Maximum clustering occurs close
to 100% unfolding (Supplementary Fig. 2). This demonstrates that
the directions are pre-folding and thus most likely primary. Since
the dataset consists of both reversed and normal directions, a reversal
test was applied. The reversed and normal directions do not share a
common true mean direction. This is likely attributable to the incom-
plete removal of a present day overprint (Fig. 5) which displaces both
the normal and reverse average in a westward direction. This effect is
largely compensated for when the reversed directions are inverted to
normal polarity and added to the set of normal directions. In order to
discard outliers, the VanDamme cutoff is applied. The resulting aver-
age for the remaining 180 directions, has a declination of 355+ 2.7°
and an inclination of 56.4 £ 2.1.

Thermal demagnetization diagrams for the OstroZac samples of
the Livno-Tomislavgrad basin are of a higher quality than the AF de-
magnetization diagrams (de Leeuw et al., 2011b, Fig. 3). We therefore
determine the rotation of the OstroZac section exclusively based on
the thermal results. These comprise both normal and reverse direc-
tions and for both sets outliers were discarded with the VanDamme
cutoff. The reversal test (McFadden and McElhinny, 1990) succeeds
with classification C and the two sets of opposite polarity were subse-
quently merged. This results in an average direction with a 13.8 £ 6.5°
declination, and a 50.6 4+ 6.1° inclination (Fig. 5). For the Tu$nica sec-
tion only AF demagnetization was carried out. These samples have a
much higher NRM intensity than those from the OstroZac section
and the established directions are regarded as suitable for a rotation

study. After removal of outliers with the VanDamme cutoff, the
remaining reversed 12 samples provide an average direction with a
190.2 £15.9° declination and a —49.6+15.4° inclination (Fig. 5).
The TuSnica and OstroZac sections share a common true mean direc-
tion and may thus be combined to arrive at an average 14.0+5.8°
declination and a mean 50.34-5.5° inclination for the Livno-Tomi-
slavgrad basin (Fig. 5). The combined set of TuSnica and OstroZac di-
rections was subjected to a fold test (Tauxe and Watson, 1994).
Clustering is highest near 100% untilting (Supplementary Fig. 2),
which suggests that these directions have a pre-tilt and therefore
most likely primary origin.

The upper part of the Gracanica section in the Gacko basin is char-
acterized by reversed directions, interpreted to be of primary origin
(Mandic et al., 2010). The VanDamme cutoff was applied to the set
of 18 directions and the surviving 16 directions yield an average dec-
lination of 180.7 £ 6.2° and an inclination of —51.0+5.8° (Fig. 5).

The average direction for the Grivice section of the Banovici basin
has a declination of 2.8 4-2.8° and an inclination of 53.5 4-2.4° (Fig. 5)
based on 70 directions of both normal and reverse polarity (de Leeuw
et al., 2011a). The reversal test is positive, but a fold test is not possi-
ble since all samples were taken along a section with a bedding plane
of relatively constant orientation.

The demagnetization diagrams for samples from the Gracanica
open pit coal mine in the Bugojno basin were of mixed quality. This
is attributable to the high amount of organic content in the sedi-
ments. Several distinct levels provided a good paleomagnetic signal
(Supplementary Fig. 2) and were considered suitable for rotational
analysis. A total of 14 directions yield an average paleomagnetic di-
rection for the Bugojno basin (Fig. 5) with a 359.1 + 5.3° declination
and a 50.0 £ 5.1° inclination.

The calculated directions and resulting averages and other statisti-
cal parameters for these 5 basins are displayed in Fig. 5 and in Supple-
mentary Table 2. The expected magnetic field direction at the time of
deposition was calculated for each location based on the 20 Ma pole
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Fig. 4. Correlation magnetostratigraphic pattern of the Grivice section in the Banovici
Basin to the GPTS 2004 and comparison with magnetostratigraphically calibrated
mammal localities in Anatolia. Correlation of the Inkonak and Harami sites according
to Krijgsman et al. (1996).

for Eurasia (Torsvik et al., 2008). Comparison of the expected and
measured directions leads us to conclude that the intra-montane ba-
sins of the Central Dinarides have hardly rotated since their lacustrine
sediments accumulated. The coherence of these results suggests that
the Dinaride Block as a whole experienced no tectonic rotation since
the Late Oligocene.

5. A compilation of Mesozoic and Cenozoic paleomagnetic data:
the differential rotation of crustal fragments in the Dinarides

We have made a compilation of available literature data, ranging
in age from early Cretaceous to Miocene to place our rotation results
for the Central Dinarides in a comprehensive framework (Supple-
mentary material). To facilitate comparison between the compiled
paleomagnetic data and the palinspastic reconstruction of
Ustaszewski et al. (2008a) we adhere to their tectonic subdivision
and group the data accordingly. In the study area, four different

tectonic blocks are distinguished (Fig. 6). The first of these blocks,
progressing from the more internal to the more external parts of
Adria, is its undeformed segment, exposed on a large part of the Istria
peninsula. The second block, called SW imbricated Adria and Dalma-
tian Zone, consists of the southern part of the Croatian coast and
islands attributed to the Dalmatian zone. The third block, called NW
imbricated Adria and High Karst, consists of the northern Croatian
islands and a large part of the imbricate structures of the High-Karst
west of the Split-Karlovac fault. The fourth and last block, called the
Dinaride Nappes and SW High Karst, consists of the Budva-Cukali
zone, the High-Karst, Dalmatian and Pre-Karst units, the East-
Bosnian Durmitor and Drina-Ivanjica nappes and obducted ophiolites,
situated between the Split-Karlovac fault and Skadar-Pe¢ (Shkodra/
Scutari-Pejé/Peja) line.

All paleomagnetic data of the four investigated blocks come from
sedimentary rocks (Supplementary data). After categorization
according to location, the data were grouped according to age. For
each site the net rotation was calculated based on a comparison of
the observed declination with the directions of the magnetic field
expected based on the location of the paleomagnetic pole of Eurasia
with a corresponding age (Torsvik et al., 2008). For each age and loca-
tion group, the mean declination was calculated using Fisher statis-
tics, after the VanDamme cut-off was applied to exclude outliers
(Supplementary data).

The amounts and timing of rotation for each of the four blocks that
constitute the Dinarides with respect to Europe resulting from our
compilation are summarized in Table 2 and Fig. 6. Undeformed
Adria has rotated 48 +10° counterclockwise (CCW) since the early
Cretaceous of which 344 7° occur since the Middle Cretaceous. Its
post Eocene rotation amounts to 28 4+ 13° but the post-20 Ma rotation
is not constrained by paleomagnetic data. The small number of pre
middle Cretaceous sites on the High Karst NW part of the imbricated
carbonate platform, forces us to group all of them together and derive
a 324 7° CCW rotation for this block. The Eocene rocks are rotated by
a similar amount, although the error is very high. The post early Mio-
cene rotation of the NW High Karst block is purely determined by
data from the lacustrine Pag locality and amounts to only 3° CCW.
The Dalmatian SW part of the imbricated carbonate platform has ro-
tated 214+ 11° CCW since the Cretaceous, of which 154 7° CCW has
occurred since the Eocene. The post 20 Ma rotation of this block is
poorly constrained. The average rotation of sites in lacustrine sedi-
ments and positioned on the SW High Karst imbricated carbonate
platform, pre-karst, Bosnian flysch, and Dinaric nappes amounts to
only 34+ 6° CCW and thus indicates that this block did not experience
any significant rotation since the late Oligocene.

The paleomagnetic data from the Sutorina Valley in Montenegro
(Kissel et al., 1995), require an additional explanation. The sampled
flysch sections in this valley are in principle located on the Dalmatian
part of the carbonate platform according to the geological map
(1:100.000). Paleomagnetic data indicate that these sites have hardly
rotated since the Eocene. On the other hand, this does not accord with
the 15° CCW rotation of the other sites located on this block. There are
two possible explanations. First, the sampled “flysch” sections could
be of Miocene rather than of Eocene age. Some authors in fact consid-
er parts of the Eocene flysch deposits exposed along the Croatian
Adriatic coast as Miocene, based on nannoplankton studies (Mikes
et al., 2008, and references therein). This solution would imply the
Dalmatian zone docked against the Central Dinarides just prior to
the Miocene and has not rotated since. An alternative explanation
would be that the Sutorina Valley flysch is actually located in the
Budva-Cukali Zone, which then consequently would not have rotated
since the Eocene.

We realize that we use pre-20 Ma data for undeformed Adria and
the Dalmatian zone with post 20 Ma data for the Central Dinarides
block. Absence of Miocene rocks on the former two blocks excludes
a better paleomagnetic estimate of their post 20 Ma rotation. There
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Fig. 6. Cretaceous to present day block rotations compiled from the available literature on top of the 20 Ma reconstruction of Ustaszewski et al. (2008a) of the different tectonic
units that the Dinarides comprises. Arrows indicate the average rotation of rocks of the indicated age. The partial arc intersecting the arrows indicates the corresponding uncertain-

ty. The rotation pole of Adria was drawn according to Ustaszewski et al. (2008a).

are currently no data older than the Late Oligocene available from the
Central Dinarides.

The new paleomagnetic data from the Late Oligocene to Middle
Miocene Dinaride Lakes clearly fit in the framework provided by the
compiled Mesozoic and Cenozoic paleomagnetic data. Both magni-
tude and timing of the rotation are furthermore in good agreement
with the rotations estimated by Ustaszewski et al. (2008a).

The apparent mismatch between paleomagnetic and structural
geological data concerning the post-Eocene rotation of Adria original-
ly arose from a postulated post-Pontian 30° rotation of sites in the
Croatian part of the Pannonian basin (i.e. younger than 6.0-4.7 Ma,
Krijgsman et al., 2010) attributed to push from the CCW rotation of
Adria. This was assumed to have affected the whole Dinaride Block
(Marton et al., 2003). However, paleomagnetic directions from Late
Oligocene to Middle Miocene lacustrine sites located on the SW
High Karst imbricated carbonate platform, pre-karst, Bosnian flysch,
and External Dinaride nappes confirm that this block has not rotated
since the late Oligocene. This is in agreement with the data of Kissel et
al. (1995). The counterclockwise rotation of Adria cannot therefore,
have driven the very young rotation of sites in the southwestern Pan-
nonian basin. This rotation is most probably attributable to the last
tectonic inversion event (latest Miocene to Pleistocene) in that part
of the Pannonian Basin, which in places is characterized by NE-SW
oriented strike slip faulting and temporally corresponds with the tim-
ing of the rotations (Marton et al., 2002). It is thus most likely that
Adria has rotated only 20° since 20 Ma, as indicated by structural geo-
logical data (Ustaszewski et al., 2008a).

The lack of rotation of the Central Dinarides implies a decoupling
of Dinarides from the Tisza-Dacia Mega-Unit. The latter block

experienced a major clockwise rotation during the Miocene (van
Hinsbergen et al., 2008). The differential movement between the
two blocks could be accommodated along the sinistral strike-slip
faults observed in the Southern Pannonian Basin (Paveli¢, 2001;
Tari-Kovaci¢, 2002). (Ustaszewski et al., 2008a) assumed that the
Dinarides have remained attached to the Tisza-Dacia Mega-Unit but
nevertheless had to make some geometrical adjustments along the
Sava Zone thus acknowledging that a certain amount of decoupling
has occurred.

6. Comparison of the compiled paleomagnetic data with the ap-
parent polar wonder paths of Europe and Africa: can Adria be con-
sidered an independent micro-plate?

We have compared the compiled paleomagnetic data for the four
blocks defined above with the apparent polar wonder path (APWP) of
Europe (Torsvik et al., 2008) to determine their differential rotation
with respect to Europe. We will now extend our analysis and com-
pare the same dataset with the APWP of Africa (Torsvik et al., 2008)
(Supplementary material) in order to assess if Adria was indeed an
independent micro-plate in the time-span covered by the data. The
rotation of the tectonic blocks in the study area with respect to Africa
(Table 3) has been calculated in a similar way as their rotation with
respect to Europe (Table 2). The results indicate that the blocks per-
taining to Adria (undeformed Adria and the NW and SW parts of
the imbricated carbonate platform) rotated around 60° CCW with re-
spect to Africa and approximately 20° CCW with respect to Europe
between the Late Jurassic and the Eocene and thus support an inde-
pendent Adriatic Plate in this time period, in agreement with the

Fig. 5. Equal area diagram with ChRM directions for the sampled sections and sites in the different intra-montane basins. The red line indicates the average declination and the gray
area the corresponding uncertainty (dDx). For a detailed explanation, we refer to the main text. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Table 2

Summary of the compiled rotation for each of the blocks the Dinarides comprise per time period with respect to Eurasia. For the purpose of comparison, the amount of rotation since
20 Ma as predicted by the tectonic reconstruction by Ustaszewski et al. (2008a) is listed. Counterclockwise rotations are denoted as negative, while clockwise rotations are positive.

Block Tectonic reconstruction Paleomagnetic data

<20 Ma 14-24Ma 34-56Ma 66-71Ma 89-112Ma 112-151 Ma
Undeformed Adria —20 —28+13 —34+7 —48+10
NW part of the imbricated carbonate platform: high karst -5 —3+4 —34428 —32+7
SW part of the imbricated carbonate platform: Dalmatian zone —20-0 —154+7 —=21+11
SW part of the imbricated carbonate platform: Dalmatian or Budva-Cukali zone Not included ? —145
SW imbricated carbonate platform (high karst), pre-karst, Bosnian flysch, and 0 —3+6

Dinaric nappes

reconstructions of Schmid et al. (2008). It should be noted that the ro-
tation with respect to Africa is larger than that with respect to Eurasia
until 66 Ma. This relation then reverses and from 56 Ma onwards the
rotation of the Adria derived blocks with respect to Africa is smaller
than with respect to Eurasia. This suggests that coupling of Adria
with Africa became larger than its coupling with Eurasia during the
Eocene, coincident with the onset of uplift in the Dinarides and the
first accumulation of flysch deposits in the foreland (Cori¢ et al.,
2008). Because Adria experienced differential rotation with respect
to both Europe and Africa from the Late Jurassic to the Eocene, and
from the Eocene to present day, we consider it most likely that it be-
haved as an independent plate.

7. Neogene to recent deformation: AMS as an indicator of post-
depositional strain

The anisotropy of the low field magnetic susceptibility (AMS) of
sedimentary rocks provides a rapid and precise description of the av-
erage preferred mineral orientation, or fabric (Mattei et al., 1997).
This fabric may in turn reflect the regional stress field (Tarling and
Hrouda, 1993) and its recognition can shed light on the tectonic evo-
lution of the area under consideration. In this study, we measured the
AMS of 400 samples from 9 different sections according to the same
methodology as applied by Vasiliev et al. (2009). The AMS tensors
were calculated according to Jelinek (1977). Error ellipses of the sus-
ceptibility axes are calculated according to Jelinek and Kropacek
(1978).

Fig. 7 provides an overview of the acquired AMS data for the
Dinaride basins. The sediments of the Sinj, Gacko and Bugojno basins
displayed only weak anisotropy, while a clear AMS pattern could be
established from the other basins. Here, the minimum axis is general-
ly oriented perpendicular to the bedding plane, which is characteris-
tic of sedimentary fabrics. The maximum and intermediate axes are
generally orthogonal and are interpreted to reflect post-depositional
strain.

For the lacustrine sediments that accumulated on top of the Dinar-
ide Carbonate Platform, i.e. the Pag and Livho-Tomislavgrad basin,
the maximum axis of anisotropy (red arrows in Fig. 7) aligns with
the average structural trend of the mountain range. This suggests

Table 3

that these basins were subject to compression orthogonal to the
Dinaridic strike after deposition of the lake sediments, in marked con-
trast to results from the more internal parts of the orogen, i.e. the Sa-
rajevo, and Banoviéi basin. Here, the maximum susceptibility axis is
oriented perpendicular to the structural trend. This is interpreted to
indicate post-depositional extension perpendicular to the mountain
range. In Ugljevik, the maximum susceptibility axis is oriented nearly
E-W and parallel to the average local strike in agreement with sub-
surface data (Horvath, 1995). In our view, this reflects a phase of N-
S compression rather than E-W extension. Our results thus suggest
that while NE-SW directed compression continued in the external
Dinarides in post Middle Miocene times, the internal Dinarides
underwent from NE-SW to N-S directed extension. The north-
eastern boundary of the orogen was affected by a post Langhian
phase of N-S compression.

Our interpretation agrees well with the general post-orogenic tec-
tonic framework for the Dinarides. In the Late Miocene and Pliocene,
the collisional systems surrounding the Pannonian basin became
locked and the region was subject to a compressional stress field
(Huismans et al., 2002). The continuing NW motion of the Adriatic in-
denter led to N-S shortening across the Dinarides; this was associated
with surface uplift and erosion and induced dextral wrenching along
orogen parallel strike-slip faults (Ili¢ and Neubauer, 2005). Along the
southern margin of the Pannonian basin, subsurface data demon-
strate general inversion (Horvath, 1995). It is this phase of N-S com-
pression that is also reflected in the AMS data for the Ugljevik basin.
In the external and southern internal Dinarides, the direction of
shortening was more NE-SW directed (Fodor et al., 1999; Ili¢ and
Neubauer, 2005; Oldow et al., 2002), which is corroborated by the
AMS results for the Pag and Livno-Tomislavgrad basins.

It is striking that late Oligocene sediments of the Banovici basin
and Early Miocene sediments of the Sarajevo basins show maximum
susceptibility axes with NE-SW directions. This signifies either oro-
gen parallel compression or extension perpendicular to the orogen.
The latter explanation seems to be more viable in this case since the
second phase of intra-montane basin formation, in which extension
penetrated deep into the Dinarides, largely postdates the sampled
sediments. It is noteworthy however, that the late Miocene to recent
inversion is not reflected in the AMS of these sediments.

Summary of the compiled rotation for each of the blocks the Dinarides comprise per time period with respect to Africa. Counterclockwise rotations are denoted as negative, while

clockwise rotations are positive.

Block Average amount of rotation sites within this age range have experienced
with respect to Africa
14-24 Ma 34-56 Ma 66-71 Ma 89-112 Ma 112-151 Ma
Undeformed Adria —22+13 —47+7 —87+10
NW part of the imbricated carbonate platform: high karst —34+4 —27+28 —45+7
SW part of the imbricated carbonate platform: Dalmatian zone —847 —28+11
SW part of the imbricated carbonate platform: Dalmatian or Budva-Cukali zone ? 7+5
SW imbricated carbonate platform (high karst), pre-karst, Bosnian flysch, and Dinaric nappes 0+6
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Fig. 7. Overview of AMS directions for the suite of sampled sections. In the equal area diagrams, circles indicate the minimum axes, squares the intermediate, and triangles the max-
imum axes of elongation. Anisotropy in the samples from the Sinj, Gacko and Bugojno basins was very low, which results in a large spread in directions. For the other locations the
minimum axis is orthogonal to the bedding plane, as expected for a sedimentary fabric. The red arrows indicate the direction of potential extension, while the blue arrows indicate
the direction of potential compression. Underlying map with tectonic units adapted from Ustaszewski et al. (2008a), for the legend, see Fig. 2. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

8. Consequences for the post-orogenic evolution of the Dinarides

Our results provide new insight into the post early Oligocene evo-
lution of the Dinarides. The newly constructed chronology elucidates
the timing of intra-montane basin formation. A first cycle of lacus-
trine sediments accumulated in basins induced by strike-slip faults
penetrating deeply into the orogen (Hrvatovi¢, 2006) in the latest OI-
igocene (Fig. 4). Optimum climatic conditions (Zachos et al., 2001)
may have stimulated the formation of these lakes (de Leeuw et al.,
2011a). Sedimentation apparently stalled in the Aquitanian and
Early Burdigalian. A second and extensive phase of lacustrine deposi-
tion took place from 18 to ~13 Ma (Fig. 3). The Dinaride Lake System
spread out over large parts of the orogen, when the Miocene Climatic
Optimum (Zachos et al., 2001) induced favorable climatic conditions.
The coincidence of this phase of intra-montane basin formation with
the main phase of extension in the Pannonian Basin System suggests
a causal link. Rifting-induced extension apparently penetrated into
the Dinarides with an influence extending to its westernmost exter-
nal reaches. This conclusion is corroborated by the data of Ili¢ and
Neubauer (2005) who studied paleostress indicators near Prijepolje
in the Central part of the Eastern Dinarides. They document a phase
of NE-SW extension that resulted in opening of the intra-montane
basins and occurred in conjunction with the main phase of extension
in the Pannonian Basin. A phase of orogen parallel NW-SE directed
extension followed and stimulated further growth of the basins.

Concurrent with the accumulation of DLS sediments in the intra-
montane realm, lacustrine and alluvial sediments accumulated in the
Sava and Drava depressions (Fig. 3). In the lower part of calcareous nan-
noplankton zone NN5 these basins subsided below the base-level of

Paratethys and were flooded by marine incursion (Cori¢ et al,
2009).Whereas some authors invoke a strike-slip mechanism to ac-
count for the subsidence of the Sava and Drava depressions
(Hrvatovi¢, 2006; Tari-Kovaci¢, 2002), others characterize them as
half-grabens (Fodor et al., 1999; Paveli¢, 2001).

Around 15 Ma, coal formation indicates shallowing of the Gacko
basin, shortly after which sedimentation came to a halt. Simultaneously,
coal formation in the Sinj basin intensified and breccias, originating
from the margins, entered the lake. Carbonate sand layers entered the
Livno-Tomislavgrad basin around the same time, and soon after, the
first limestone breccias appeared in the Mandek section. An intensifica-
tion of compressional tectonic activity is indicated by a coarsening and
thickening of the breccias. Deposition continued until at least 13 Ma.
While sedimentation in the intra-montane basins came to a halt, the
central part of the study area was inverted (Tari-Kovacic, 2002). In the
Sava and Drava depressions, deposition came to a halt as well, and a
Late Sarmatian erosional unconformity developed (Saftic et al., 2003).

The Late Miocene to Pliocene evolution of the mountain chain was
characterized by renewed shortening and dextral wrenching (Ili¢ and
Neubauer, 2005; Picha, 2002; Pribicevi¢ et al., 2002; Tari-Kovacic,
2002). During this period most major faults accommodated a signifi-
cant amount of strike-slip motion and this has significantly influ-
enced the present day structural fabric of the study area.
Interestingly, several authors (Hrvatovi¢, 2006; Tari-Kovacic, 2002)
have also invoked a strike-slip mechanism for the formation of the
Miocene intra-montane basins. One of the main arguments for this is
that the basins are often associated with major faults bear a strike-slip sig-
nature and generally have an en-echelon shape. The detailed stress anal-
ysis by Ili¢ and Neubauer (2005), on the other hand, reveals NE-SW
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extension during the Early to Middle Miocene. The extensional faults re-
sponsible for this have in most cases been reactivated and overprinted
during late-stage wrenching. While a strike-slip component during the
Miocene cannot be excluded, it is also possible that the intra-montane ba-
sins were formed by orogen-perpendicular extension and received their
en-echelon shape later.

The current seismic activity and ongoing convergence between
Adria and Europe (Bennett et al., 2008; Grenerczy et al., 2005; Oldow
et al,, 2002) indicate that deformation in the Dinarides is ongoing. A
change in GPS velocities (Bennett et al., 2008; Grenerczy et al., 2005)
between the central Dinarides, the Dalmatian coast and Adria, indicates
that differential motions are taking place between these plates. This fa-
vors a model in which the larger part of the Adria push is accommodat-
ed by deformation within the Dinarides and only a small amount is
transferred further east. Miocene, Pliocene and even Quaternary sedi-
ments are affected by faults (Dragicevic et al., 1999; Pribicevic et al.,
2002) and the frontal thrusts are at present located in the Adriatic,
just offshore the Croatian Islands (Korbar, 2009; Schmid et al., 2008;
Tari-Kovacic, 2002).

9. Conclusions

An initial phase of basin formation struck the Dinarides in the lat-
est Oligocene as evident from for example, the Banovici Basin. A sec-
ond and more profound phase started around 18 Ma and continued
until at least 13 Ma. It thus coincided with a phase of severe extension
in the Pannonian Basin System, which suggests a causal link. At that
time, the Dinaride Lake System extended from the Pag Island in the
far west to the Gacko basin in the south and the Southern Pannonian
Basin in the East. The prevailing optimum climatic conditions stimu-
lated formation of the lakes. Our new paleomagnetic results and a re-
interpretation of available data from the literature indicate that the
Dinarides have not rotated since the deposition of the DLS sediments.
This implies that the rotation of Adria was not transferred to the Cro-
atian margin of the Pannonian Basin and that the shortening resulting
from this rotation must have been mainly accommodated within the
Dinarides, in accordance with the present-day GPS results. AMS re-
sults corroborate a post Middle Miocene shortening along the frontal
zone of the Dinarides. In the more central parts of the Dinarides, the
AMS pattern most likely reflects extension orthogonal to the average
Dinaride strike. The absence of rotation in the Dinarides implies that
the orogen remained largely decoupled from the Tisza-Dacia block
since 24 Ma.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.tecto.2012.01.004.
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