
Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2012) xxx–xxx

PALAEO-06348; No of Pages 10

Contents lists available at SciVerse ScienceDirect

Palaeogeography, Palaeoclimatology, Palaeoecology

j ourna l homepage: www.e lsev ie r .com/ locate /pa laeo
Phenotypic evolution in a fossil gastropod species lineage:
Evidence for adaptive radiation?

Thomas A. Neubauer ⁎, Mathias Harzhauser, Andreas Kroh
Geological–Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
⁎ Corresponding author. Tel.: +43 1 52177 576; fax:
E-mail addresses: thomas.neubauer@nhm-wien.ac.a

mathias.harzhauser@nhm-wien.ac.at (M. Harzhauser), a
(A. Kroh).

0031-0182/$ – see front matter © 2012 Elsevier B.V. All
http://dx.doi.org/10.1016/j.palaeo.2012.11.025

Please cite this article as: Neubauer, T.A., e
Palaeogeography, Palaeoclimatology, Palaeo
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 18 September 2012
Received in revised form 28 November 2012
Accepted 30 November 2012
Available online xxxx

Keywords:
Adaptive radiation
Adaptive landscape
Stasis
Fast Fourier analysis
Lake Pannon
Detecting speciation in the fossil record is a particularly challenging matter. Palaeontologists are usually
confronted with poor preservation and limited knowledge on the palaeoenvironment. Even in the contrary
case of adequate preservation and information, the linkage of pattern to process is often obscured by insuf-
ficient temporal resolution. Consequently, reliable documentations of speciation in fossils with discussions
on underlying mechanisms are rare. Here we present a well-resolved pattern of morphological evolution in
a fossil species lineage of the gastropod Melanopsis in the long-lived Lake Pannon. These developments are
related to environmental changes, documented by isotope and stratigraphical data. After a long period of
stasis, the ancestral species experiences a phenotypic change expressed as shift and expansion of the
morphospace. The appearance of several new phenotypes along with changes in the environment is
interpreted as adaptive radiation. Lake-level high stands affect distribution and availability of habitats and,
as a result of varied functional demands on shell geometry, the distribution of phenotypes. The ongoing di-
vergence of the morphospace into two branches argues for increasing reproductive isolation, consistent
with the model of ecological speciation. In the latest phase, however, progressively unstable conditions re-
strict availability of niches, allowing survival of one branch only.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Whenever traditional taxonomy meets high morphological vari-
ability, a whole host of new species, subspecies, and phenotypes is
frequently described, often based on minor morphologic deviations.
In such a case, the morphologic species concept is unsatisfactory
and an evolutionary point of view will allow more comprehensive
conclusions. In the fossil record, this inevitably leads to complications,
as natural populations cannot be precisely captured in respect to co-
eval generations (e.g. Hunt, 2010). Also, soft-part anatomy is not pre-
served, precluding molecular analyses. However, the fossil record is
the only chance to study morphological change and speciation over
long time intervals (Benton and Pearson, 2001; Allmon and Smith,
2011). Long-lived lakes are virtually predetermined for these studies,
because of their duration and relative stability, being therefore often
called ‘islands of evolution’ (Glaubrecht, 2011). Many studies have
proven this fact repeatedly, including the papers on the impressive
morphological developments in the Middle Miocene Lake Steinheim
planorbids (Hilgendorf, 1867; Gottschick, 1920; Mensink, 1984;
Gorthner and Meier-Brook, 1985; Nützel and Bandel, 1993), the Neo-
gene Aegean freshwater gastropods (Willmann, 1981, 1985; Rust,
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1997), or the Recent Lake Tanganyika gastropods (e.g., West et al.,
1991; Michel et al., 1992; West and Cohen, 1994).

The present study employs data from Lake Pannon, a prime exam-
ple of a long-lived lake in the fossil record (Fig. 1). It existed from the
Late Miocene to Early Pliocene (~11.6–5.8 Ma) and had a surface area
of approximately 290,000 km2 during its maximum extent (Magyar
et al., 1999; Harzhauser et al., 2004). Numerous gastropod groups ex-
perienced outstanding patterns of morphological evolution, including
several lineages among the genus Melanopsis (e.g. Papp, 1953; Geary,
1990; Harzhauser and Mandic, 2008). This taxon is widely known for
its highly variable shell morphology, in extant as well as fossil species
(Glaubrecht, 1993). For this reason, its species lineages in Lake
Pannon were recognized early (Papp, 1953).

Lately, these developments became the focus of evolutionary
studies including first morphometric approaches (Geary, 1990,
1992; Geary et al., 2002). All of the performed analyses, however,
treat only a restrictive set of individuals of geographically isolated
populations and contain stratigraphic errors, making the resulting
conclusions doubtful. Moreover, the authors act on the a priori as-
sumptions of the distinctiveness of species within a lineage. To retain
objectivity, we refrained from any predefined species/subspecies
delimitations, many of which were proposed in earlier studies, and
refer to the different morphologies as phenotypes (definition after
Schluter, 2000).

The aim of this paper is to document and discuss the phenotypic
evolution in a single evolutionary lineage by modern morphometric
a fossil gastropod species lineage: Evidence for adaptive radiation?
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Fig 1. (a) Geographic setting of the studied localities in the Vienna Basin (Nexing, Nussdorf, Hennersdorf), the adjacent Eisenstadt–Sopron Basin (St. Margarethen, Siegendorf) and
the Styrian Basin (Ollersdorf) (modified after Kroh, 2005). (b, c) Palaeolimnological maps of Lake Pannon during its initial phase (b) and its largest extent (c) (from Magyar et al.,
1999).
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analysis. The investigated geological interval of c. 1.6 Ma provides an
excellent opportunity to study alternating modes of evolution in the
fossil record, including stasis, the proposed adaptive radiation, and
the final extinction of one of the emerging branches. The integration
of a comprehensive set of palaeoenvironmental data taken from the
literature provides the necessary link between the observed pheno-
typic evolution and underlying parameters, potentially allowing eval-
uation of the taxonomic status of the phenotypes.

2. Material

Subject of study was the species lineage of Melanopsis impressa
Krauss, 1852 (Fig. 2). For the morphometric analysis a set of 448 ide-
ally preserved individuals could be considered (Table 1, Fig. 1; strati-
graphic ages after Papp, 1951, 1953; Harzhauser et al., 2004). For each
locality/bed preservation was uniform over all melanopsid pheno-
types. This precludes potential corruption of the analysis by a
preservational bias. Additionally, a few reference specimens of the
ancestor species M. impressa were included from the locality Nexing
(Table 1, Fig. 1). Particularly the integration of stratigraphically suc-
cessive layers from a single section (i.e. St. Margarethen) proved to
be especially important for the interpretation of the results. It ruled
out that different geographical origins of the samples account for
the varying ecological conditions, which are proposed to cause the
morphological evolution.

Because the morphometric analysis normalises for size, dimen-
sions were measured separately. Measurements were taken from
752 specimens including all those used for outline analysis (Table 1).

3. Methodology

Morphometric analysis of gastropod shells has certain limitations:
The most obvious one is the problem of homology – gastropods have
very few homologous points that can be used, e.g., in a landmark
Please cite this article as: Neubauer, T.A., et al., Phenotypic evolution in
Palaeogeography, Palaeoclimatology, Palaeoecology (2012), http://dx.doi.
analysis (Johnston et al., 1991; Stone, 1998). In the absence of homolo-
gous points analysis of curves (e.g. outlines, which are considered
homologous in their entirety; Sampson et al., 1996) is a promising ap-
proach. A series of analytical methods has been established over the
last decades, depending on the complexity of the curves and whether
they are open or closed (e.g. Rohlf, 1990; Sampson et al., 1996;
MacLeod, 1999, 2002; Loy et al., 2000; Sheets et al., 2006). A group of
analytical methods typically used for closed complex curves is the
so-called Fourier analyses (e.g. Kuhl and Giardina, 1982; Davis, 1986;
Foote, 1989; Haines and Crampton, 2000; Loy et al., 2000; Sheets et
al., 2006; Van Bocxlaer and Schultheiß, 2010). These techniques are
based upon the decomposition of a complex function into a combina-
tion of simpler trigonometric functions.

Of these, the Fast Fourier Transformmethodwas applied in the pres-
ent study for the following reasons: a) the method is highly accurate in
capturing details of the outline (Haines and Crampton, 2000; Brusoni
and Basso, 2007); b) the method allows smoothing of the outline to re-
duce potential pixel noise and minor outline irregularities produced by
outline tracing programmes (Haines and Crampton, 2000). Such graph-
ical artefacts could severely corrupt the analysis.

Elliptical Fourier Analysis (Kuhl and Giardina, 1982; Crampton,
1995), another frequently applied method for analysis of outlines, in
contrast, has some technical limitations and thus was not used in
this study. First, it produces computationally not independent coeffi-
cients, a fact that compromises following statistical analyses (Haines
and Crampton, 2000). Second, it progressively downweighs finer ele-
ments of shape, lowering the explanatory power of the result (Haines
and Crampton, 2000). Another possibility for analysing outlines is the
use of semi-landmarks (Bookstein, 1996, 1997; Sheets et al., 2004).
This requires a very careful assessment of homology (Van Bocxlaer
and Schultheiß, 2010). The melanopsid gastropods studied here ex-
pose an extremely broad morphological disparity, thus hampering
the definition of sufficient homologous points and outline segments
that could be used.
a fossil gastropod species lineage: Evidence for adaptive radiation?
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Fig. 2. Images of typical representatives of each phenotype of the Melanopsis impressa-species lineage, in ventral and dorsal view. (A, B) impressa-phenotype (Nexing).
(C–F) pseudonarzolina-phenotype (Nussdorf). (G, H) coaequata-phenotype (Siegendorf). (I, J) coaequata-phenotype (St. Margarethen, bed 12). (K, L) fossilis-phenotype
(Ollersdorf). (M, N) rugosa-phenotype (St. Margarethen, bed 20). (O–R) handmanniana-phenotype (Siegendorf). (S–V) vindobonensis-phenotype (Hennersdorf). Note that the
rugosa-phenotype was not used in the morphometric analysis (for details see Section 2).
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Table 1
Material used for the morphometric analyses. Note that not all the measured specimens could be used in the Fourier analysis because of insufficient preservation. Abbreviation:
NHMW — Natural History Museum Vienna.

Locality GPS Age [Ma] n (size) n (analysis) Specimen storage

Nexing N48° 29′ 36″, E16° 39′ 32″ 12.0 27 10 NHMW 2012/0214
Nussdorf N48° 15′ 43″, E16° 21′ 43″ 11.5–11.4 83 82 NHMW 2012/0227
St. Margarethen bed 4 N47° 45′ 45″, E16° 37′ 47″ 11.5–11.4 50 20 NHMW 2012/0215
St. Margarethen bed 8 N47° 45′ 45″, E16° 37′ 47″ 11.2 45 no data NHMW 2012/0216
St. Margarethen bed 10 N47° 45′ 45″, E16° 37′ 47″ 11.0 100 20 NHMW 2012/0217
St. Margarethen bed 12 N47° 45′ 45″, E16° 37′ 47″ 10.8 70 21 NHMW 2012/0218
St. Margarethen bed 20 N47° 45′ 45″, E16° 37′ 47″ 10.7 77 no data NHMW 2012/0219
Ollersdorf N47° 10′ 54″, E16° 09′ 53″ 10.7–10.6 100 100 NHMW 2012/0220
Siegendorf N47° 46′ 44″, E16° 34′ 55″ 10.7–10.6 100 100 NHMW 2012/0221
Hennersdorf N48° 06′ 16″, E16° 21′ 11″ 10.4 100 95 NHMW 2012/0222
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In contrast to these two methods, the Fast Fourier Transform
method is expected to provide the most reliable and most detailed
picture and consequently has been employed for the analysis of the
morphological evolution of the M. impressa-lineage here.

Specimens are sampled from single coquina layers to avoid any
temporal bias. Only non-fragmented and non-deformed shells were
used in the morphometric analysis. Where necessary, objects were
cleaned from sediment. To avoid a bias from growth allometry, juve-
nile specimens were excluded. As many specimens had a slightly
damaged aperture, objects were photographed from backside, mini-
mizing the potential impact of a preservational bias. Images were
taken overexposed to maximize contrast and create sharp outlines.
They were analysed with the software TpsDig 2.12 (Rohlf, 2008),
which translated outlines into x,y-coordinates. These were processed
with the programmeHangle, which employs the Fast Fourier Transform
method for outline analysis (Crampton and Haines, 1996; Haines and
Crampton, 2000). Outlineswere smoothed 10 times. To reproducemor-
phological details significantly, 20 harmonics were used. Subsequently,
outlines were normalized for starting point (i.e. the apex) with the
programme Hmatch (Crampton and Haines, 1996). Principal compo-
nent analysis (PCA) from a variance–covariance matrix was computed
in PAST 2.14 (Hammer et al., 2001). For visualization of outlines in the
PCA plots we used CorelTrace 11.633.

Data on the abiotic conditions are provided by comprehensive iso-
tope and stratigraphic studies (Magyar et al., 1999; Harzhauser et al.,
2004, 2007). Both the samples used for the morphological analysis as
well as the major part of the isotope samples studied by Harzhauser
et al. (2007) originate from a geographically small area at the western
margin of Lake Pannon. Based on the previously published isotope
data a rather detailed model of palaeoenvironmental change is avail-
able for the time interval and area studied. This model is used to cor-
relate changes observed in gastropod morphology with palaeoclimate
shifts.

4. Results

Both the morphometric analysis and the size measurements
indicate massive changes in the morphology of the melanopsid line-
age through time (Figs. 3–5). During the first four time slices
(12.0–11.2 Ma) only small and slender specimens occur, traditionally
separated as two subspecies M. impressa impressa Krauss, 1852 and
M. impressa pseudonarzolina Papp, 1953 (Fig. 2). Still, within the en-
tire period no net change in the morphology is recorded, reflecting
morphological stasis. The clusters show low variability and thus occu-
py a restricted region of the available morphospace. The plots show
that individuals from both ‘subspecies’ cannot be separated, neither
from the outline analysis (no separation along any principal compo-
nent) nor from the measurements.

The first distinct morphological shift happens within the following
200,000 yr (11.2–11.0 Ma). This involves not only a movement but
a beginning extension of the clusters, resulting from a much greater
Please cite this article as: Neubauer, T.A., et al., Phenotypic evolution in
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variety of forms and size ranges. Both impressa and pseudonarzolina
are entirely replaced by newly occurring phenotypes. Depending
on the degree of shouldering, globosity and size, earlier taxonomic de-
scriptions assigned these specimens to up to four species/subspecies/
forms (M. fossilis (Gmelin, 1791), M. coaequata Handmann, 1887,
M. handmanniana Fischer, 1996a, and M. vindobonensis Fuchs, 1870;
Fig. 2; see also Papp, 1953; Fischer, 1996b). The trend towards an
expanding size range continues over the next 200,000 yr, when few
specimens of even larger and more highly shouldered phenotypes ap-
pear (M. handmanniana Fischer, 1996a and M. rugosa Handmann,
1887; 10.8 Ma). The rugosa-phenotype is not covered by the morpho-
metric analysis, as the criterion for its taxonomic separation is the
presence of strong ribs, which is not captured by the outline analysis.
This phenotype appears during the interval 10.8–10.7 Ma, whereas it
becomes common only in late stages.

The beginning divergence of phenotypes culminates in a maxi-
mum within the interval 10.7–10.6 Ma. In the PCA, this is shown as
expansive cloud with a bimodal distribution. The broad and highly
shouldered handmanniana-phenotype is the most common, with in-
dividuals varying greatly regarding apical angle and outline complex-
ity. On the other side of the morphological spectrum is the small and
globular vindobonensis, which, in contrast, shows reduced variability
and occupies a dense zone in the morphospace. Between the two ex-
tremes, a great variety of morphologies (fossilis, coaequata) still exist.

Finally, again within 200,000 yr (10.6–10.4 Ma), this impressive
morphological diversity collapses completely. Only a single pheno-
type (vindobonensis) is present, forming a dense cluster in PCA
(Fig. 3). Moreover, the mean and range of its dimensions are strongly
reduced (Fig. 4).
5. Discussion

Although analytically totally independent, both the raw measure-
ments and the morphometric analysis identified the most distinct
morphological changes in the very same intervals. Three steps in
the morphological evolution of the melanopsid lineage can be ob-
served, including 1) stasis over 800,000 yr (i.e. zero net change of
the morphology), 2) a subsequent distinct shift of the occupied
morphospace along with an initial expansion, followed by a diver-
gence towards two different phenotypes, and 3) the extinction of
one of the emerging branches together with all intermediate forms.

The first and most crucial question for further discussion is
whether the observed changes are any response to environmental
change or not. Therefore, we will assess potential functional impor-
tance of the morphological changes in respect to changing environ-
mental parameters. Moreover, we are concerned with a varying rate
of evolution: Why is there morphological stasis over such a long peri-
od, followed by rapid changes? And finally, why does only a single
branch survive in the latest interval, showing a quite restricted mor-
phological spectrum?
a fossil gastropod species lineage: Evidence for adaptive radiation?
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5.1. Link to palaeoenvironmental data

Recent studies on isotope and geophysical data and regional stra-
tigraphy present a possible link of the observed morphological shifts
to changes in the palaeoenvironment (Magyar et al., 1999;
Harzhauser et al., 2004, 2007; Kern et al., 2012). Particularly the stud-
ies on stable isotopes are a comprehensive source of information, as
the major part of these data also comes from mollusc shells from
the Vienna Basin. All these investigations consider the Vienna Basin
and its satellite basins in early stages of Lake Pannon as fluvio-
deltaic setting with low lake level due to arid conditions (Fig. 1).
This is supported by shells of terrestrial gastropods in surrounding
settings, which show conchological aridity adaptations (Lueger, 1978).
This interval comprises the slender shells of the pseudonarzolina-
phenotype as common fossils. The subsequent initial phase of mor-
phologic evolution with the appearance of several phenotypes
(11.2–11.0 Ma; Figs. 3, 4) parallels a trend of increasing humidity
with enhanced precipitation and lake-level high stand. Data from
palaeoclimate reconstructions of the Middle to Late Miocene indicate
massive increases in average annual temperature and precipitation all
over Central and Southwest Europe during this period (Böhme et al.,
2008). This trend continues during the interval of morphospace diver-
gence (10.7–10.6 Ma), when Lake Pannon reached its maximum extent
(Fig. 1; Harzhauser et al., 2004).

In the latest interval studied herein (10.4 Ma) the situation
changes dramatically. Periodic increases of river discharge and ac-
companying lake level changes, stronger seasonality with drier sum-
mer months, lake stratification during winter months and eutrophic
conditions due to high productivity and algal blooms generated pro-
gressively unstable environmental conditions (Daxner-Höck, 2004;
Harzhauser et al., 2007). While many sublittoral mollusc species
flourish during this time, the shallow water Melanopsis species are
successively displaced. The only melanopsids found belong to the
small-sized vindobonensis-phenotype. This phase coincides with the
‘Vallesian Crisis’ in mammalian assemblages (Agustí and Moyà-Solà,
1990).

5.2. Fitting a model

The link ofmorphological shifts and climate change is crucial. Surely,
random genetic drift (e.g. Lande, 1976; Raup, 1977; Bookstein, 1987;
Please cite this article as: Neubauer, T.A., et al., Phenotypic evolution in
Palaeogeography, Palaeoclimatology, Palaeoecology (2012), http://dx.doi.
Roopnarine et al., 1999; Hunt, 2006, 2007) may have operated to
some extent on the studied traits, but the link to environmental data
clearly signals the strong influence of environmental parameters on
the morphological evolution of the melanopsid species lineage. More-
over, Estes and Arnold (2007) showed that genetic drift does not ac-
count for substantial evolutionary change during long geological time,
as it is the case in this study.

In the following, we will elaborate the three abovementioned
steps in the evolutionary history of the M. impressa-lineage, and try
to reveal possible links to certain ecological conditions and environ-
mental events. For this we employ the concept of the adaptive land-
scape (e.g. Wright, 1932; Simpson, 1944; Lande, 1976; Estes and
Arnold, 2007; McGhee, 2007; Gavrilets, 2010). When set into envi-
ronmental context, shifting regions in the morphospace can be relat-
ed to shifting adaptive optima on the landscape: populations tracing
their ‘ideal morphologies’ in respect to environmental conditions
(Lande, 1986; Arnold et al., 2001). As the principal components result
from the highly sensitive Fourier coefficients, it is unrealistic to paral-
lel a single component with a specific feature of the shell outline.
Nevertheless, excursions in the plot reflect real variations of morpho-
logical characters in a multidimensional space. The first two principal
components – showing the most variability in the data space – can be
used as axes of the adaptive landscape.

5.2.1. Step 1 — Stasis
During the interval 12.0–11.2 Ma no net change in shape and size

is recorded, reflecting morphological stasis (Figs. 3–5). This is nothing
unusual. Indeed, many authors favour the theory that morphological
stasis persists through most of the time (e.g. Hansen and Martins,
1996; Hansen, 1997; Arnold et al., 2001). Hunt (2007) showed that
in almost 50% of fossil sequences stasis is the prevalent evolutionary
pattern. After Lande (1986) long-term morphological stasis requires
the influence of stabilizing selection, precluding any morphological
change from mutation and/or genetic drift. A main factor for stabiliz-
ing selection is thought to be individual habitat choice. This concept
properly applies here. Environmental data showed that the ecological
conditions during that time were largely constant (Harzhauser
et al., 2007). Habitat availability and distribution did not change
substantially, reflecting an about constant adaptive optimum (or nar-
row ‘adaptive zones’ after Simpson, 1944; Estes and Arnold, 2007).
Stabilizing selection operated on the investigated traits to keep the
a fossil gastropod species lineage: Evidence for adaptive radiation?
org/10.1016/j.palaeo.2012.11.025
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Fig. 4. Size change of the Melanopsis impressa-species lineage over time. On the right-hand side size ranges are lumped across phenotypes to visualize the most dramatic shifts.
Abbreviations: NE — Nexing, NU — Nussdorf, MA — St. Margarethen (with numbers of horizons), OL — Ollersdorf, SG — Siegendorf, HE — Hennersdorf; c — coaequata, f — fossilis,
h — handmanniana, i — impressa, p — pseudonarzolina, r — rugosa, v — vindobonensis. Numbers next to locality abbreviations refer to their geological age (in million years).
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population close to the peak (Hunt et al., 2008). Consequently, the
taxonomic separation of the ‘subspecies’ pseudonarzolina from
impressa, introduced for stratigraphical differences, has to be rejected.

5.2.2. Step 2 — The adaptive radiation
In respect to the simultaneously changing environmental factors,

the subsequent morphological shift with the first occurrence of sever-
al new phenotypes, followed by a massive morphological divergence,
Please cite this article as: Neubauer, T.A., et al., Phenotypic evolution in
Palaeogeography, Palaeoclimatology, Palaeoecology (2012), http://dx.doi.
is considered to reflect adaptive radiation, i.e. morphologic diversity
as a result of rapidly multiplying lineages (e.g. Schluter, 2000;
Hendry et al., 2007; Losos and Mahler, 2010). In terms of the adaptive
landscape this is best explained by the model of a displaced adaptive
optimum (Lande, 1986; Estes and Arnold, 2007; Hunt et al., 2008). In
this model, the average phenotype is considered to follow an opti-
mum, which has rapidly moved to a new position. In case of an adap-
tive radiation, descendant species occupy different adaptive peaks,
a fossil gastropod species lineage: Evidence for adaptive radiation?
org/10.1016/j.palaeo.2012.11.025
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here. The onset of the adaptive radiation is signalled by conspicuous increase of the
morphological variability, in both plots shown by the shifted medians and expanded
percentile boxes. The extinction event is reflected by a strong decrease of morpholog-
ical variability. Likewise, during the interval of stasis variation is comparatively small.
Note that for the full interpretation of the results the consideration of all variables is
necessary and that the pattern exhibited by single characters as illustrated above
may slightly deviate from the general trend.
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corresponding to different ecological niches (Schluter, 2000; Arnold
et al., 2001). On a global scale the landscape becomes complex with
multiple peaks, while on a local scale the individual phenotype/
species might simply ascend a (moving) local adaptive optimum
(Arnold et al., 2001). The model also accounts for divergence
over geologically long time scales. As we are here confronted with
c. 200,000 yr for the initial divergence, several shifts of the optimum
(presumably in same ‘ecological direction’) can be expected (Estes
and Arnold, 2007).

After Schluter (2000) adaptive radiation incorporates three main
processes. Related to properties of the adaptive landscape, these are
1) phenotypic differentiation (populations following a peak, which
moves as a result of changes in the environment), 2) phenotypic diver-
gence (subpopulations approaching different peaks, as a result of diver-
gent selection from competition or ecological opportunity) and 3) the
establishment of reproductive isolation, i.e. ecological speciation. For
Please cite this article as: Neubauer, T.A., et al., Phenotypic evolution in
Palaeogeography, Palaeoclimatology, Palaeoecology (2012), http://dx.doi.
discussion whether adaptive radiation necessarily involves (ecological)
speciation see Schluter (2000, 2001) and Losos and Mahler (2010).

Each of these steps is documented in the presented data. The ini-
tial phenotypic differentiation is mirrored in the morphological shift
in the interval 11.2–11.0 Ma. This goes along with a first expansion
of the morphospace with the appearance of several new phenotypes
(fossilis, coaequata, vindobonensis), i.e. phenotypic divergence. How-
ever, there is still large morphologic overlap between these forms, re-
garding both size and shape traits. Over the following 200,000 yr two
new phenotypes emerge (handmanniana, rugosa), which account for
minor changes in the average morphology. In summary, at 10.8 Ma
five phenotypes are synchronously present within a limited geo-
graphic area (Figs. 1, 4). The most impressive phenotypic divergence
happens within the interval 10.7–10.6 Ma. In the PCA, this is
expressed as a bimodal distribution towards a large and highly shoul-
dered handmanniana- and a small, globular vindobonensis-phenotype.
Although both phenotypes occur already earlier, they become dis-
tinctly more abundant during this period and massively extend the
initial divergence. This strong phenotypic bifurcation is considered
to reflect the last process, i.e. ecological speciation (Schluter, 2000).

5.2.2.1. Potential trigger mechanisms. This claim implies diverging nat-
ural selection leading to reproductive isolation, as a result of ecologi-
cal specialization of certain phenotypes to certain environments. This
raises the question, what promoted the evolution of larger and shoul-
dered/globular phenotypes?

The development of sculptured and/or shouldered shells is not un-
usual in Melanopsis. In Lake Pannon several independent lineages
show recurrent patterns of morphological evolution. This includes
the lineage of M. bouei Férussac, 1823 (Geary, 1990), coevally occur-
ring with the M. impressa-lineage, and the Pontian (late Tortonian)
lineage of M. caryota (Stoliczka, 1862) (Geary et al., 2002). Both spe-
cies show changes in average shell shape and either a loss of sculpture
(M. bouei) or an increase of shouldering (M. caryota) comparable to
the here documented case. For M. caryota Geary et al. (2002) discuss
potential agents of selection, considering a predator–prey model, or a
response to changing water chemistry or hydrodynamic conditions,
as equally likely explanations.

Comparable developments are common throughout the history of
this genus, and also among the recent populations (e.g. Glaubrecht,
1993, 1996; Bandel, 2000; Heller and Sivan, 2002). Studies on
Melanopsis species from the Pleistocene Jordan Valley showed a distinct
correlation between morphology and water energy (Heller and Sivan,
2002). Smooth and slender forms are considered to represent agitated
environments, hence to dwell within or in the proximity of rivers. In
contrast, sculptured shells reflect non-turbulent habitats. Likewise, the
smooth and slender impressa- and pseudonarzolina-phenotypes of
Lake Pannon dwelled in fluvio-deltaic settings, exposed to elevated
water energy. Parallel to the appearance of broader and shouldered
phenotypes (fossilis, coaequata, vindobonensis) a massive increase in
lake level is recorded, representing low-energy open-lake conditions
(Fig. 1; Harzhauser et al., 2007). This trend increases during the broad
phenotypic divergence (Figs. 3, 5). Comparable correlations are found
in the extant species of the gastropod Lavigeria in Lake Tanganyika.
Michel et al. (1992) showed that the divisions betweenmorphospecies
coincide with habitat barriers (see also Michel, 1994). Likewise, the
workgroup around Johannesson (2009, and references therein)
presented an evolutionary model from the marine gastropod Littorina
saxatilis. Two ecotypes arise fromdivergent selection, resulting fromad-
aptation to different substrates and predation intensity. Similarly, we
consider lake-level changes, which strongly affect substrate type and
exposure to water energy, to be the trigger of the proposed divergent
selection. The changing ecological conditions might have promoted in-
vasion of new adaptive zones with underutilized niches, i.e. ecological
opportunity, which is considered the most likely case for speciation
(Schluter, 2000; Seehausen, 2006; Losos and Mahler, 2010).
a fossil gastropod species lineage: Evidence for adaptive radiation?
org/10.1016/j.palaeo.2012.11.025
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Though it is a common trigger mechanism in gastropod evolution
(e.g. Vermeij and Covich, 1978;West et al., 1991; Martens et al., 1994;
West and Cohen, 1994; Johannesson, 2001), the frequently cited
predator–prey co-evolution as explanation model for the evolution
of such morphologies seems unsuitable in the present case. Although
larger and highly shouldered shells provide better constructional sta-
bility against shell-crushing predators, the evidence for such interac-
tions is poor (Geary et al., 2002). Moreover, different phenotypes
with varied constructional stability coexist in the same environment
over hundred thousands of years across several localities throughout
the entire lake (Geary, 1990, 1992).

5.2.2.2. Limitations. Still, we cannot definitely assure from this kind of
palaeontological data that the observed pattern is consistent with
adaptive radiation (e.g. Allmon and Smith, 2011), nor can we proof
the exact mode of speciation. Palaeontological data will rarely allow
a precise reconstruction of the involved processes, e.g. adaptive radi-
ation (e.g. Schluter, 2000; Rintelen et al., 2004; Rintelen and
Glaubrecht, 2005; Pinto et al., 2008; Losos and Mahler, 2010) versus
non-adaptive radiation (e.g. Rundell and Price, 2009; Wilke et al.,
2010), ecological speciation (e.g. Schluter, 1996, 2000, 2009;
Dieckmann and Doebeli, 1999; Doebeli and Dieckmann, 2003;
Coyne and Orr, 2004; Rundle and Nosil, 2005; Hendry et al., 2007;
Hendry, 2009) versus non-ecological speciation (e.g. McKinnon et
al., 2004; Rundell and Price, 2009; Schluter, 2009), or a possible influ-
ence of hybridization (e.g. Mallet, 2008, 2009; Sadedin et al., 2009).
This is still a highly discussed topic in evolutionary biology and usual-
ly rests upon studies on molecular data, tests/models for mating pref-
erences (e.g. Gavrilets and Vose, 2009; Sadedin et al., 2009) and
behavioural aspects like resource competition – features that can be
rarely tested or inferred from fossils (e.g. Hunt, 2010; Louys et al.,
2012). Nevertheless, the correlation between the phenotypic changes
and the environmental alterations strongly argues for ecologically
driven natural selection. Consequently, the strong phenotypic diver-
gence is thought to reflect reproductive isolation. The argument for
directional selection is corroborated by the fact that both shape and
size traits show massive changes within the interval of the proposed
adaptive radiation. Hunt (2007) suggested body size to be a more
common subject to directional selection than shape traits.

Finally, the stratigraphic resolution is not precise enough to identify
where and when the initial divergence happened, regarding exact loca-
tion and time, hence gradual vs. punctuated change (e.g. Eldredge and
Gould, 1972; Gould and Eldredge, 1977; Hunt, 2008). Unfortunately,
there is no possibility to increase stratigraphic resolution, because no
fossils are preserved between the studied intervals. Nevertheless, as
all samples are collected from proximate localities at the western lake
margin, they are suggested to represent populations that thrived
under similar conditions. The phenotypic differentiation and diver-
gence is known to occur within a single locality (St. Margarethen, this
study) – excluding a spatial bias – and coevally across several localities
in the Vienna Basin, the Eisenstadt–Sopron Basin (this study) and even
throughout the entire Lake Pannon (Geary, 1990, 1992; Geary et al.,
2002). As the environmental changes, proposed to cause the morpho-
logical evolution, affected the whole lake (Harzhauser et al., 2007;
Böhme et al., 2008), we can at least exclude a bias of our results from
immigration events (e.g. Van Bocxlaer et al., 2008).

Limited dispersal by virtue of narrow ecological preferences or the
mode of reproduction in Melanopsis can also be excluded. Recent
Melanopsis praemorsa (Linnaeus, 1758) is a generalist, living in a
great variety of habitats. These include rivers, ponds, springs, shallow
lakes with inundated marshes, mud and gravel shores of estuaries, ir-
rigation canals, and oases. It tolerates high temperatures and brackish
conditions (Brown, 1994; Mouahid et al., 1996; Plaziat and Younis,
2005; Bandel et al., 2007). This species feeds variably on algae, detri-
tus and carrion (Glaubrecht, 1996). M. praemorsa is a dioecious, ovip-
arous species with direct development of the larvae into the adult
Please cite this article as: Neubauer, T.A., et al., Phenotypic evolution in
Palaeogeography, Palaeoclimatology, Palaeoecology (2012), http://dx.doi.
animal; no planktonic stage occurs (Mouahid et al., 1996). This
might result in limited dispersal possibilities over large geographical
distances within a short time. However, this is expected to play a
minor role for the geological time scales dealt with here.
5.2.3. Step 3 — Extinction
In the latest stage included in this study, only very small individ-

uals of the vindobonensis-phenotype are present. Environmental
data indicate a strong turnover during this period, with large-scale,
astronomically-tuned climatic changes (Kern et al., 2012) and strong
seasonal fluctuations of lake level, productivity and river discharges
(Harzhauser et al., 2007). Martens et al. (1994) concluded that sea-
sonality has strong effect on the biology of long-lived lake animals.
This is particularly true for the influence of changing nutrient input.
Possibly, the reduced amount and availability of nutrients drove the
larger phenotypes of the herbivorous snails to extinction. Moreover,
the lake level changes might have strongly influenced the exposure
of the snails to increasing water energy and wave action. Probably,
the small, globular vindobonensis-phenotype was better adapted to
these new environmental conditions. Recent biometric analyses re-
vealed that compact shells with low spires have a higher postural sta-
bility on the substrate than those with higher spires (Noshita et al.,
2012). Of course, this is exceedingly influenced with increasing
water energy. Also Heller and Sivan (2002) relate stout shells of
Melanopsis from the Pleistocene of the Jordan Valley to highly turbu-
lent waters. Consequently, the unstable conditions during the
Vallesian Crisis with at least partially higher water energy may have
suppressed the large and shouldered phenotypes.
6. Conclusions

In summary, our results demonstrate an evolutionary sequence
involving morphological stasis, a shift of the occupied morphospace
followed by phenotypic divergence, and finally an extinction of one
of the branches. The morphological changes could be reliably linked
to palaeoenvironmental data. These suggest about constant condi-
tions for the interval of stasis, promoting the action of stabilizing se-
lection on the studied traits. The following shifting and expanding
morphospace parallels an increase in lake level, which resulted in
an overall change in the available habitat types. Investigations on
the functional importance of shell characteristics (e.g. Heller and
Sivan, 2002; Noshita et al., 2012) suggest, amongst others, declining
water energy to trigger the evolution of more globular and shoul-
dered phenotypes. This strong correlation between environmental
parameters and appearance of several new phenotypes is interpreted
as an adaptive radiation (e.g. Schluter, 2000; Losos andMahler, 2010).
The subsequent impressive divergence towards two different optima
is considered to reflect adaptation to new habitats. The slowly evolv-
ing discrepancies of ecological requirements indicate the action of
divergent natural selection. This finally resulted in two separate phe-
notypes, which are interpreted as distinct species, consistent with the
model of ecological speciation (e.g. Schluter, 2001, 2009; Rundle and
Nosil, 2005). In the latest investigated stage a massive environmental
turnover with strong seasonally fluctuating conditions reduced avail-
able niche space and wiped out the majority of formerly existing
phenotypes/species. The only surviving species comprised the small
and globular M. vindobonensis.

Concluding, the employed methods allowed detailed insights into
different modes and rates of evolution. The Fast Fourier transform
method proved particularly capable of describing the morphospace
accurately. Future research should focus increasingly on the applica-
tion of such comprehensive analyses. This will essentially enlarge
our toolbox of methods to reveal morphological changes and relate
them to evolutionary mechanisms in the fossil record.
a fossil gastropod species lineage: Evidence for adaptive radiation?
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